

क्षार्वर्क्षेत्व्य ज्ञेन्ड्रेक्विई विक्रूत ठंठर्छू हेम्वेत्तावार्य भारतीय प्रौद्योगिकी संख्यान हेवराबाव Indian Institute of Technology Hyderabad

Parallel talk for PPC conference (reg. id: 177)

Effect of large extra dimension in future long baseline neutrino experiments

Papia Panda University of Hyderabad

《曰》《問》《曰》《曰》 (曰)

- Neutrinos are the second most abundant particle in nature (after photon).
- They are chargeless, **nearly** massless, weakly interacting leptonic point particles.

Unknowns in neutrino sector:

1 Absolute masses of ν_1, ν_2 and ν_3 ?

Upper bound (from cosmological data) on sum of three mass eigenstates:

$$\sum_{i=1}^{3}\nu_{i}\leq0.113~eV$$

- Neutrinos are the second most abundant particle in nature (after photon).
- They are chargeless, nearly massless, weakly interacting leptonic point particles.

Unknowns in neutrino sector:

- 1 Absolute masses of ν_1, ν_2 and ν_3 ?
- 2 Mass hierarchy spectrum: NH or IH ?

-

∃ → < ∃</p>

- Neutrinos are the second most abundant particle in nature (after photon).
- They are chargeless, nearly massless, weakly interacting leptonic point particles.

Unknowns in neutrino sector:

3

1 Absolute masses of ν_1, ν_2 and ν_3 ?

Mass hierarchy spectrum: NH or IH ?

$$\nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} \nu_{i}$$

The value of
$$\delta_{CP}$$
 ?

$$\begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{bmatrix}$$

ABABABABA DOG

- Neutrinos are the second most abundant particle in nature (after photon).
- They are chargeless, nearly massless, weakly interacting leptonic point particles.

Unknowns in neutrino sector:

1 Absolute masses of ν_1, ν_2 and ν_3 ?

3

$$\nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} \nu_{i}$$

The value of δ_{CP} ?

Octant problem in atmospheric sector (value of θ_{23}) ?

Introduction of Large Extra Dimension (LED)

Problem in mass hierarchy spectrum ?

- How to explain the 16 order of magnitude difference?
- Ans: By introducing "large extra dimension"

-

医下子 医

- Acoording to LED, there exist "N" extra dimensions with radius R_{FD} .
- Gravitons can walk in between brane and bulk...
- All SM particles should lie on the brane only
- Interaction of graviton with SM particles are very small due to the "escaping" of graviton in bulk

(ロ) (同) (E) (E) (E) (C) October 15, 2024

• Gravitational force, $F \sim r^{-(2+N)}$ when $r < R_{ED}$, and $F \sim r^{-2}$, $r > R_{ED}$

¹doi:10.1103/PhysRevD.65.105015

October 15, 2024 5/16

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

- Gravitational force, $F \sim r^{-(2+N)}$ when $r < R_{ED}$, and $F \sim r^{-2}$, $r > R_{ED}$
- In LED, M_{pl} and M_W are related by ¹,

$$M_{pl}^2 \sim M_W^{2+N} R_{ED}^N \tag{1}$$

¹doi:10.1103/PhysRevD.65.105015

- Gravitational force, $F \sim r^{-(2+N)}$ when $r < R_{ED}$, and $F \sim r^{-2}$, $r > R_{ED}$
- In LED, M_{pl} and M_W are related by ¹,

$$M_{\rho l}^2 \sim M_W^{2+N} R_{ED}^N \tag{1}$$

$$R_{ED} \sim 1.98 \times 10^{(32/N)-17} \mathrm{cm}$$
 (2)

¹doi:10.1103/PhysRevD.65.105015

- Gravitational force, $F \sim r^{-(2+N)}$ when $r < R_{ED}$, and $F \sim r^{-2}$, $r > R_{ED}$
- In LED, M_{pl} and M_W are related by ¹,

$$M_{pl}^2 \sim M_W^{2+N} R_{ED}^N \tag{1}$$

$$R_{ED} \sim 1.98 \times 10^{(32/N)-17} {
m cm}$$
 (2)

Value of N	R _{ED}	
1	\sim 10 ¹⁰ km (ruled out)	
2	\sim 0.1 cm (not favourable)	
3	$\sim 10^{-7}~{ m cm}$	

¹doi:10.1103/PhysRevD.65.105015

- Gravitational force, $F \sim r^{-(2+N)}$ when $r < R_{ED}$, and $F \sim r^{-2}$, $r > R_{ED}$
- In LED, M_{pl} and M_W are related by ¹,

$$M_{pl}^2 \sim M_W^{2+N} R_{ED}^N \tag{1}$$

$$R_{ED} \sim 1.98 \times 10^{(32/N)-17} {
m cm}$$
 (2)

Value of N	R _{ED}	
1	\sim 10 ¹⁰ km (ruled out)	
2	\sim 0.1 cm (not favourable)	
3	$\sim 10^{-7}~{ m cm}$	

LED says, there might be many extra dimensions, having larger R_{ED} for (4+1)th dimension than others.

¹doi:10.1103/PhysRevD.65.105015

October 15, 2024 5/16

- Gravitational force, F ~ r^{-(2+N)} when r < R_{ED}, and F ~ r⁻², r > R_{ED}
- In LED, M_{pl} and M_W are related by ¹,

$$M_{pl}^2 \sim M_W^{2+N} R_{ED}^N \tag{1}$$

$$R_{ED} \sim 1.98 \times 10^{(32/N)-17} {
m cm}$$
 (2)

Value of N	R _{ED}	
1	\sim 10 ¹⁰ km (ruled out)	
2	\sim 0.1 cm (not favourable)	
3	$\sim 10^{-7}~{ m cm}$	

LED says, there might be many extra dimensions, having larger R_{ED} for (4+1)th dimension than others. Only one fundamental mass scale, M_W .

¹doi:10.1103/PhysRevD.65.105015

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回日 のの⊙

LED in neutrino sector

• ν_R can walk in between brane and bulk.

²doi:10.1103/PhysRevD.65.024032

LED in neutrino sector

- ν_R can walk in between brane and bulk.
- All active neutrinos lie on the brane only

²doi:10.1103/PhysRevD.65.024032

글 님

★ ∃ → < ∃</p>

LED in neutrino sector

- ν_R can walk in between brane and bulk.
- All active neutrinos lie on the brane only
- Active neutrino mass²,

$$m_{\nu} \sim \frac{y v_H}{\sqrt{M_W^N R_{ED}^N}} \sim \frac{y v_H M_W}{M_{\rho l}}$$
$$\sim 10^{-4} \left(\frac{y M_W}{1 \, \text{TeV}}\right) [\text{eV}], \qquad (3)$$

where $v_H = 246 \ GeV$

²doi:10.1103/PhysRevD.65.024032

Experimental setup

Setup	Run-time (years)
DUNE	$5(u_{e}):5(ar{ u}_{e})$
T2HK	$5(u_{e}):5(ar{ u}_{e})$
P2SO	$3(u_{e}):3(ar{ u}_{e})$

Experimental Setup

Sarlod Usdarground Research Facility	Fernild	
	NETTRO NECTOR NETTOR ACCELIMATOR	

Parameter	Values
θ_{12}	33.41°
θ_{13}	8.58°
θ_{23}	42°
δ_{CP}	230°
$\Delta m_{21}^2 (eV^2)$	$7.41 imes 10^{-5}$
$\Delta m_{32}^2 (eV^2)$	$\pm 2.507 imes 10^{-3}$

Oscillation parameters we have used for our calculation

315

★ ∃ → < ∃</p>

Experimental setup

Setup	Run-time (years)
DUNE	$5(u_{e}):5(ar{ u}_{e})$
T2HK	$5(u_{e}):5(ar{ u}_{e})$
P2SO	$3(u_{e}):3(ar{ u}_{e})$

Experimental Setup

Parameter	Values
θ_{12}	33.41°
θ_{13}	8.58°
θ_{23}	42°
δ_{CP}	230°
$\Delta m_{21}^2 (eV^2)$	$7.41 imes 10^{-5}$
$\Delta m_{32}^2 (eV^2)$	$\pm 2.507 imes 10^{-3}$

Oscillation parameters we have used for our calculation

< ロ > < 同 > < 回 > < 回 > :

Experimental setup

Setup	Run-time (years)
DUNE	$5(u_{ extsf{ heta}}):5(ar{ u}_{ heta})$
T2HK	$5(u_{ extsf{e}})$: $5(ar{ u}_{ extsf{e}})$
P2SO	$\Im(u_{m{ heta}})$: $\Im(ar{ u}_{m{ heta}})$

Experimental Setup

Parameter	Values
θ_{12}	33.41°
θ_{13}	8.58°
θ_{23}	42°
δ_{CP}	230°
$\Delta m_{21}^2 (eV^2)$	$7.41 imes 10^{-5}$
$\Delta m_{32}^2 (eV^2)$	$\pm 2.507 imes 10^{-3}$

Oscillation parameters we have used for our calculation

Probability expressions in presence of LED

The approximate appearance probability in presence of R_{ED} (keeping $m_0 = 0$ eV):

$$P_{\mu\theta}(L,E) \simeq P_{\mu\theta}^{SM}(L,E) + R_{ED}^{2} \Big[A + B\cos(\frac{L\Delta m_{31}^{2}}{2E} + \delta_{CP}) + C\cos(\frac{L\Delta m_{31}^{2}}{2E} - \frac{L}{2ER_{ED}^{2}}) + D\cos(\frac{L}{2ER_{ED}^{2}}) \Big]$$

$$(4)$$

where,

$$A = 1.2 \times 10^{-5} \cos(\delta_{CP}) \sin(2\theta_{23}) eV^2$$

$$B = -1.6 \times 10^{-5} \sin(2\theta_{23}) eV^2$$

$$C = 0.0871 \Delta m_{31}^2 \sin^2(\theta_{23})$$

$$D = -0.0871 \Delta m_{31}^2 \sin^2(\theta_{23})$$
(5)

and $P_{\mu e}^{\text{SM}}(L, E)$ is the standard appearance probability.

・ロト ・同ト ・ヨト ・ヨト ショー のくの

Probability plots for P2SO

Probability vs energy (GeV) for P2SO: upper row \rightarrow left (right) panel shows appearance (disappearance) channel for ν 's; lower row \rightarrow same for $\bar{\nu}$'s; The legends are in the form: $(\delta_{CP}[\circ] - m_0[eV] - R_{ED}[\mu m])$.

(ロ) (同) (E) (E) (E) (C)

Event rates for DUNE and P2SO

Event rate vs energy (GeV): left (right) panel is appearance (disappearance) event rates for P2SO. The legends are in the form: $(\delta_{CP}[\circ] - m_0[eV] - R_{ED}[\mu m]).$

(ロ) (同) (E) (E) (E) (C) October 15, 2024

Bounds for *m*₀ and *R*_{ED}

Bounds of m_0 vs R_{ED} (in μ m) at 90% C.L. for the synergy of DUNE, T2HK and P2SO.

Results for bounds

SETUP	CONDITIONS	<i>R_{ED}</i> (μ <i>m</i>) at <i>m</i> ₀ =0 eV
P2SO	all-fixed-no-sys	0.194
	$\delta_{CP} - \theta_{23} - \Delta m_{31}^2$ -free-no-sys	0.236
	all-fixed-with-sys	0.232
	δ_{CP} -free-with-sys	0.230
	$\delta_{CP} - \theta_{23}$ -free-with-sys	0.265
	Δm_{31}^2 -free-with-sys	0.345
	$\delta_{CP} - \theta_{23} - \Delta m_{31}^2$ -free-with-sys	0.361
	all-free-with-sys	0.361
DUNE+T2HK	all-fixed-no-sys	0.229
	$\delta_{CP} - \theta_{23} - \Delta m_{31}^2$ -free-no-sys	0.235
	all-fixed-with-sys	0.317
	δ_{CP} -free-with-sys	0.317
	$\delta_{CP} - \theta_{23}$ -free-with-sys	0.317
	Δm_{31}^2 -free-with-sys	0.390
	$\delta_{CP} - \theta_{23} - \Delta m_{31}^2$ -free-with-sys	0.414
	all-free-with-sys	0.414

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ October 15, 2024

SETUP	CONDITIONS	<i>R_{ED}</i> (μ <i>m</i>) at <i>m</i> ₀ =0 eV
P2SO+DUNE+T2HK	all-fixed-no-sys	0.175
	$\delta_{CP} - \theta_{23} - \Delta m_{31}^2$ -free-no-sys	0.222
	all-fixed-with-sys	0.208
	δ_{CP} -free-with-sys	0.215
	$\delta_{CP} - \theta_{23}$ -free-with-sys	0.232
	Δm_{31}^2 -free-with-sys	0.299
	$\delta_{CP} - \theta_{23} - \Delta m_{31}^2$ -free-with-sys	0.320
	all-free-with-sys	0.320

R_{ED} bound for different synergy of DUNE, T2HK and P2SO experiments

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▼ ◆○

Effect of systematic uncertainty

Bound sensitivity as a function of systematic uncertainty (in percentage) for synergy of DUNE, T2HK and P2SO experiments.

October 15, 2024

315

Sensitivity plots

October 15, 2024 15/16

• Presence of large extra dimension modifies the nature of probability plots. Larger the value of m_0 and R_{FD} , more the wiggles in the plots.

> (ロ) (同) (E) (E) (E) (C) October 15, 2024

- Presence of large extra dimension modifies the nature of probability plots. Larger the value of m_0 and R_{FD} , more the wiggles in the plots.
- Experimentally, there will be significant difference between the event rates in absence and presence of extra dimension parameters.

(ロ) (同) (E) (E) (E) (C) October 15, 2024

- Presence of large extra dimension modifies the nature of probability plots. Larger the value
 of m₀ and R_{ED}, more the wiggles in the plots.
- Experimentally, there will be significant difference between the event rates in absence and presence of extra dimension parameters.
- R_{ED} bound mostly depends on Δm_{31}^2 , if this is in free, the bound on R_{ED} is poor, if it is fixed, the bound is strong.

(ロ) (同) (E) (E) (E) (C)

- Presence of large extra dimension modifies the nature of probability plots. Larger the value of m_0 and R_{FD} , more the wiggles in the plots.
- Experimentally, there will be significant difference between the event rates in absence and presence of extra dimension parameters.

(ロ) (同) (E) (E) (E) (C) October 15, 2024

- R_{ED} bound mostly depends on Δm_{31}^2 , if this is in free, the bound on R_{ED} is poor, if it is fixed, the bound is strong.
- P2SO is giving strong bound on R_{FD} at 90% C.L. compared to DUNE, T2HK and the synergy of DUNE and T2HK.

- Presence of large extra dimension modifies the nature of probability plots. Larger the value
 of m₀ and R_{ED}, more the wiggles in the plots.
- Experimentally, there will be significant difference between the event rates in absence and presence of extra dimension parameters.
- R_{ED} bound mostly depends on Δm_{31}^2 , if this is in free, the bound on R_{ED} is poor, if it is fixed, the bound is strong.
- P2SO is giving strong bound on R_{ED} at 90% C.L. compared to DUNE, T2HK and the synergy of DUNE and T2HK.
- The synergy of DUNE, T2HK and P2SO is giving stronger bound on *R_{ED}* compared to individual and combinations of these experiments.

(ロ) (同) (E) (E) (E) (C)

- Presence of large extra dimension modifies the nature of probability plots. Larger the value of m_0 and R_{FD} , more the wiggles in the plots.
- Experimentally, there will be significant difference between the event rates in absence and presence of extra dimension parameters.
- R_{FD} bound mostly depends on Δm_{21}^2 , if this is in free, the bound on R_{FD} is poor, if it is fixed, the bound is strong.
- P2SO is giving strong bound on R_{FD} at 90% C.L. compared to DUNE, T2HK and the synergy of DUNE and T2HK.
- The synergy of DUNE, T2HK and P2SO is giving stronger bound on R_{FD} compared to individual and combinations of these experiments.

October 15, 2024

16/16

Bound on R_{ED} largely depends on systematic uncertainity. When the systematics becomes 20%, the sensitivity gets independent on systematics.

- Presence of large extra dimension modifies the nature of probability plots. Larger the value of m_0 and R_{FD} , more the wiggles in the plots.
- Experimentally, there will be significant difference between the event rates in absence and presence of extra dimension parameters.
- R_{FD} bound mostly depends on Δm_{21}^2 , if this is in free, the bound on R_{FD} is poor, if it is fixed, the bound is strong.
- P2SO is giving strong bound on R_{FD} at 90% C.L. compared to DUNE, T2HK and the synergy of DUNE and T2HK.
- The synergy of DUNE, T2HK and P2SO is giving stronger bound on R_{FD} compared to individual and combinations of these experiments.
- Bound on R_{ED} largely depends on systematic uncertainity. When the systematics becomes 20%, the sensitivity gets independent on systematics.
- CPV, mass hierarchy and octant sensitivity are not significantly changes with respect to R_{ED} .

Thank you

October 15, 2024

Backup Slides

< □ > < 同

17/16

October 15, 2024

DUNE

Types of extra dimension

- Large extra dimension: here SM particles are in 4D. One very large extra dimension is present, other extra dimensions are small in size. Right handed neutrinos are present in all the extra dimensions as well as in 4D; in bulk.
- Universal extra dimension: here SM as well as right handed neutrinos all are in bulk, in all 4+n dimensional spacetime.

(ロ) (同) (E) (E) (E) (C) October 15, 2024

19/16

Warped extra dimension