Results 0000000000 References

Probing Scalar Nonstandard Interactions: Insights from the Protvino to Super-ORCA Experiment Phys.Rev.D 109 (2024) 9, 095038

Dinesh Kumar Singha University of Hyderabad

PPC 2024

University of Hyderabad

Experimental Detail

Results 0000000000 Summar

References

Unknowns in Neutrino Sector

Mass Hierarchy.

- $\Delta m_{31}^2 > 0$ (Normal Hierarchy) $m_3 >> m_2 > m_1$
- $\Delta m_{31}^2 < 0$ (Inverted Hierarchy) $m_2 > m_1 >> m_3$
- * R. N. Mohapatra et al., arXiv:hep-ph/0510213

- Absolute scale of neutrino mass is unknown to us.
- Nature of Neutrinos: Dirac or Majorana type?

Introduction

Experimental Detail

Results 0000000000 Summary

References

Unknowns in Neutrino Sector

CP Violation

C[Particle] = AntiparticleParity changes the helicity of a state.

Is $P(\nu_{\alpha} \rightarrow \nu_{\beta}) \neq P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta})$?

• CP non-invariance comes from δ_{CP} phase in the Leptonic mixing matrix U.

- CP violation can explain the matter antimatter asymmetry in the universe.
- *A. S. Joshipura et al. JHEP 08 (2001), 029

University of Hyderabad

Octant of θ_{23}

• Atmospheric mixing angle ($heta_{23}$) deviates from maximum-mixing value 45°

- Are there more than 3 neutrino mass eigenstates? (Do sterile neutrinos exist?)
- Do neutrinos break the CPT and Lorentz invariance?
- Are there Non-Standard Interaction (NSI) effects?

- $\bullet~$ Neutrino oscillations $\rightarrow~$ opportunity for new physics
- NSI of ν 's with matter is widely studied BSM physics in neutrino oscillations
- Two kinds of NSI in matter

• Vector NSI:
$$\mathcal{L}_{NSI} = -2\sqrt{2}G_F \epsilon_{\alpha\beta}^{fC} (\overline{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\overline{f}\gamma_{\mu}P_Cf),$$

• Scalar NSI: $\mathcal{L}_{SNSI} = \frac{y_f Y_{\alpha\beta}}{m_{\alpha}^2} (\overline{\nu}_{\alpha}\nu_{\beta})(\overline{f}f),$

- In matter vector NSI mainly comes with standard matter effect term $\implies H \sim M^2/2E + (V_{SI} + V_{NSI})$
- But the scalar NSI term modifies the mass matrix instead $\implies H \sim \frac{(M+\delta M)(M+\delta M)^{\dagger}}{2E} + V_{SI}$
- In model independent way, we can write this contribution as

$$\implies \delta M = \sqrt{|\Delta m_{31}^2|} \begin{pmatrix} \eta_{ee} & \eta_{e\mu} & \eta_{e\tau} \\ \eta_{e\mu}^* & \eta_{\mu\mu} & \eta_{\mu\tau} \\ \eta_{e\tau}^* & \eta_{\mu\tau}^* & \eta_{\tau\tau} \end{pmatrix}$$

• P2SO and DUNE are the two longest possible neutrino oscillation experiments

Introduction 00000 Experimental Details

Results 0000000000 Summary

References

Long-baseline options at KM3NeT: P2O, upgraded P2O, P2SO

Long-baseline options:

Neutrino source: U-70 synchrotron at Protvino Baseline: 2595 km

Detector options: ORCA, Super-ORCA

1 P2O: Beam power \Rightarrow 90 KW, Detector \Rightarrow ORCA.

2 upgraded P2O:Beam power \Rightarrow 450 KW, Detector \Rightarrow ORCA.

() P2SO: Beam power \Rightarrow 450 KW, Detector \Rightarrow Super-ORCA.

Run time: 3 years ν + 3 years $\overline{\nu}$

* A. V. Akindinov et al. Eur. Phys. J. C 79 (2019), no. 9 758. [arXiv:1902.06083]

• Future Long-Baseline experiment with a baseline of 1300 km.

• The neutrino source will be located at Fermilab, USA and the detector will be located in South Dakota, USA.

- Detects neutrinos of beam power 1.2 MW equivalent to 1.1×10^{21} POT per year with a 40 kt liquid argon time-projection chamber detector.
- Run-time into 3.5 years in ν mode and 3.5 years in $\overline{\nu}$ mode.

Introduction	Experimental Details	Results	Summary	References
00000	00	•00000000	O	00
Probability Plots	S			

Figure: Appearence and disappearance probabilities for P2SO experiment.

University of Hyderabad

Introduction 00000 Experimental Details

Results

Summary

References

Allowed region of Δm_{31}^2

Figure: Allowed values of Δm_{31}^2 at 3σ C.L. when SNSI is fitted in the theory with the standard three flavour scenario in the data.

University of Hyderabad

July 2024

Introduction	Experimental Details	Results	Summary	References
00000	00	00000000	O	00
Bounds				

Figure: Bounds on the SNSI diagonal parameters ($\eta_{ee}, \eta_{\mu\mu}$ and $\eta_{\tau\tau}$) from DUNE and P2SO experiments.

Introduction	Experimental Details	Results	Summary	References
00000	00	000●000000	O	00
Rounds				

Figure: Constraints on scalar NSI parameters, η_{ee} (left), $\eta_{\mu\mu}$ (middle) and $\eta_{\tau\tau}$ (right) for DUNE and P2SO experiments in normal mass ordering.

Figure: Allowed region between $\sin^2 \theta_{23} - \Delta m_{31}^2$ at 3σ C.L. in standard and in presence of SNSI parameters for DUNE and P2SO experiment.

Figure: Mass hierarchy sensitivity of the SNSI diagonal parameters ($\eta_{ee}, \eta_{\mu\mu}$ and $\eta_{\tau\tau}$) for DUNE and P2SO experiment.

Introduction	Experimental Details	Results	Summary	References
00000	00	000000●000	O	00
Events				

Appearance channel event difference (Normal ordering - Inverted ordering)						
Experiments	$\eta=$ 0.04	$\eta = 0$	$\eta = -0.04$			
P2SO (η_{ee})	6992	6273	5609			
DUNE (η_{ee})	360	244	150			
P2SO $(\eta_{\tau\tau})$	5336	6273	7510			
DUNE $(\eta_{ au au})$	151	244	343			

Table: Appearance channel event difference for P2SO and DUNE for $\delta_{CP}^{true} = 90^{\circ}$. These events corresponds to 3 years running of P2SO and 6.5 year running of DUNE.

Probability Formula in the presence of η_{ee}

$$P_{\mu e} = \cos^{2}\left(\theta_{13} + \theta_{13}^{'}\right)\cos^{2}\theta_{23}\sin^{2}2\theta_{12}^{'}\sin^{2}\left(\frac{\Delta_{21}^{\text{eff}}L}{2}\right) + \frac{1}{16}\sin^{2}2\left(\theta_{13} + \theta_{13}^{'}\right)\sin^{2}\theta_{23}$$

$$\times \left\{7 + \cos\left(\Delta_{21}^{\text{eff}}L\right) - 4\cos\left((\Delta_{21}^{\text{eff}} - \Delta_{31}^{\text{eff}})L\right) - 4\cos\left(\Delta_{31}^{\text{eff}}L\right) + 2\cos4\theta_{12}^{'}\sin^{2}\left(\frac{\Delta_{21}^{\text{eff}}L}{2}\right)$$

$$- 8\cos2\theta_{12}^{'}\sin\left(\frac{\Delta_{21}^{\text{eff}}L}{2}\right)\sin\left(\frac{(\Delta_{21}^{\text{eff}} - 2\Delta_{31}^{\text{eff}})L}{2}\right)\right\} + P_{\mu e}^{\delta_{CP}}$$
(1)

Results

where $P_{\mu e}^{\delta_{CP}}$ is the CP phase dependent part and is expressed as

$$\mathbf{P}_{\mu\mathbf{e}}^{\delta_{CP}} = \cos^{2}\left(\theta_{13} + \theta_{13}^{'}\right)\sin(2\theta_{23})\sin\left(\theta_{13} + \theta_{13}^{'}\right)\sin(2\theta_{12}^{'})\sin\left(\frac{\Delta_{21}^{\text{eff}}L}{2}\right) \\
\times \left[\cos\delta_{CP}\cos2\theta_{12}^{'}\sin\left(\frac{\Delta_{21}^{\text{eff}}L}{2}\right) - \cos\left(\frac{\Delta_{21}^{\text{eff}}L}{2}\right)\sin\delta_{CP} + \sin\left(\delta_{CP} + \Delta_{31}^{\text{eff}}L - \frac{\Delta_{21}^{\text{eff}}L}{2}\right)\right]$$
(2)

University of Hyderabad

1

Introduction	Experimental Details	Results	Summary	References
00000	00	00000000●0	O	00
Probability fea	tures			

$$\sin 2 heta_{12}^\prime \sim 0 \implies a_{12} = 0$$
 .

This in turn gives

$$\eta_{ee} = \frac{-2\Delta m_{21}^2}{\sqrt{\Delta m_{31}^2 (m_2 - m_1)(1 + \cos 2\theta_{13} - \sin 2\theta_{13} \tan \theta_{13}')}}.$$
 (3)

If we assume the contribution to θ_{13}^{\prime} to be negligible, then we will get $\eta_{ee} \sim -0.1748$.

$$2 heta_{13}^{'}(\eta_{ee}=-0.1)=1.61^{
m o},\,\,2 heta_{13}^{'}(\eta_{ee}=0)=3.56^{
m o},\,\,2 heta_{13}^{'}(\eta_{ee}=0.1)=6.02^{
m o}\,,$$

and hence we can conclude that

$$P_{\mu e}(\eta_{ee} < 0) < P_{\mu e}(\eta_{ee} = 0) < P_{\mu e}(\eta_{ee} > 0).$$
(4)

Introduction	Experimental Details	Results	Summary	References
00000	00	00000000●	O	00
Probability featu	ıres			

Figure: $P_{\mu e}^{\delta_{CP}}$ vs η_{ee} (left panel), $P_{\mu e}^{\delta_{CP}}$ vs δ_{CP} (middle panel) and $P_{\mu e}$ vs E (right panel).

- The change in probability amplitude depends on the relative sign of the SNSI parameter.
- Δm_{31}^2 has a non-trivial role for $\eta_{\mu\mu}$ and $\eta_{\tau\tau}$, bounds on these parameters depend on how Δm_{31}^2 is minimized.
- P2SO and DUNE are sensitive to absolute neutrino mass in the presence of SNSI.
- Sensitivity to η remains unchanged for $m_{light} < 10^{-2}$ eV.
- For certain values of η_{ee} , experiments become insensitive to δ_{CP} .

Introduction	Experimental Details	Results	Summary	References
00000	00	000000000	O	●0
References				

- B. Dutta, S. Ghosh, K. J. Kelly, T. Li, A. Thompson, and A. Verma, Non-standard neutrino interactions mediated by a light scalar at DUNE, arXiv:2401.02107.
- S.-F. Ge and S. J. Parke, Scalar Nonstandard Interactions in Neutrino Oscillation, Phys. Rev. Lett. 122 (2019), no. 21 211801, [arXiv:1812.08376].
- A. Medhi, M. M. Devi, and D. Dutta, Imprints of scalar NSI on the CP-violation sensitivity using synergy among DUNE, T2HK and T2HKK, JHEP 01 (2023) 079, [arXiv:2209.05287].
- K. S. Babu, G. Chauhan, and P. S. Bhupal Dev, Neutrino nonstandard interactions via light scalars in the Earth, Sun, supernovae, and the early Universe, Phys. Rev. D 101 (2020), no. 9 095029, [arXiv:1912.13488].

Thank You

Acknowledgments:

- I acknowledge CMSD HPC facility of Univ. of Hyderabad to carry out computations in this work.
- I acknowledge PMRF.

Backup Slides

Systematics	P20	Up P2O	P2SO	DUNE
Sg-norm ν_e	7%	7%	5%	2%
Sg-norm $ u_{\mu}$	5%	5%	5%	5%
Bg-norm	12%	12%	12%	5% to 20%
Sg-shape	11%	11%	11%	NA
Bg-shape	4% to 11%	4% to 11 %	4% to 11%	NA

Table: The values of systematic errors that we considered in our analysis. "norm" stands for normalization error, "Sg" stands for signal and "Bg" stands for background.

$$H_{SNSI} = E_{\nu} + \frac{\mathcal{M}\mathcal{M}^{\dagger}}{2E_{\nu}} + \operatorname{diag}(\sqrt{2}G_F N_e, 0, 0) , \qquad (5)$$

with

$$\mathcal{M} = U \operatorname{diag}(m_1, m_2, m_3) U^{\dagger} + \sqrt{|\Delta m_{31}^2|} \begin{pmatrix} \eta_{ee} & \eta_{e\mu} & \eta_{e\tau} \\ \eta_{\mu e} & \eta_{\mu\mu} & \eta_{\mu\tau} \\ \eta_{\tau e} & \eta_{\tau\mu} & \eta_{\tau\tau} \end{pmatrix} .$$
(6)

Whereas the same Hamiltonian in the presence of VNSI parameters ϵ can be written as:

$$H_{VNSI} = E_{\nu} + \frac{1}{2E_{\nu}} U \operatorname{diag}(m_1^2, m_2^2, m_3^2) U^{\dagger} + \sqrt{2} G_F N_e \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{\mu e} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{\tau e} & \epsilon_{\tau\mu} & \epsilon_{\tau\tau} \end{pmatrix} \quad . \tag{7}$$

University of Hyderabad

χ^2 Analysis

We simulate the true (N^{true}) and test (N^{test}) event rates and compare them by using binned χ^2 method defined in GLoBES, i.e.,

$$\chi^{2}_{\text{stat}}(\vec{p}_{\text{true}}, \vec{p}_{\text{test}}) = \sum_{i \in \text{bins}} 2 \Big[N_{i}^{\text{test}} - N_{i}^{\text{true}} - N_{i}^{\text{true}} \ln \left(\frac{N_{i}^{\text{test}}}{N_{i}^{\text{true}}} \right) \Big], \tag{8}$$

where \vec{p} stands for the array of standard neutrino oscillation parameters. However, for numerical evaluation of χ^2 , we also incorporate the systematic errors using the pull method, which is generally done with the help of nuisance parameters as discussed in the GLoBES manual.

$$\chi_{\text{stat}}^{2}(\boldsymbol{p}_{true}, \boldsymbol{p}_{test}) = \sum_{i \in \text{bins}} \frac{(N_{i}^{\text{true}} - N_{i}^{\text{test}})^{2}}{N_{i}^{\text{true}}}$$
(9)
$$\chi_{\zeta}^{2}(\boldsymbol{p}_{true}, \boldsymbol{p}_{test}) = \min_{\zeta} [\sum_{i \in \text{bins}} \frac{(N_{i}^{\text{true}} - N_{i}^{\text{test}})^{2}}{N_{i}^{\text{true}}} + \frac{\zeta^{2}}{\sigma_{\zeta}^{2}}]$$
(10)

Lagrangian density

$$\mathcal{L}_{NSI} = -2\sqrt{2}G_{F}\epsilon^{fC}_{\alpha\beta}(\overline{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta})(\overline{f}\gamma_{\mu}P_{C}f), \qquad (11)$$

$$\mathcal{L}_{SNSI} = \frac{y_f Y_{\alpha\beta}}{m_{\phi}^2} (\overline{\nu}_{\alpha} \nu_{\beta}) (\overline{f} f), \qquad (12)$$

where $y_f \rightarrow$ yukawa coupling between scalar and matter fermion, $Y_{\alpha\beta} \rightarrow$ yukawa coupling between scalar and propagating neutrino

Dirac equation

In general

$$\overline{
u_eta}[i\gamma^\mu(\partial_\mu + \textit{vector contribution}) + (M_{etalpha} + \textit{scalar contribution})]
u_lpha = 0$$

For scalar NSI

$$\overline{
u_{eta}}[i\gamma^{\mu}\partial_{\mu}+(M_{etalpha}+rac{n_{f}y_{f}Y_{lphaeta}}{m_{\phi}^{2}})]
u_{lpha}=0$$

S3 Extended seesaw particle content

Fields	e_R^c , μ_R^c	$ au_R^c$	$L_{1,2}$	L ₃	$N_{R_{1,2}}^c$	$N_{R_3}^c$	ν_s	$H_{u,d}$	(Y_{2}^{2})	(Y_{2}^{4})	(Y_{2}^{6})	(Y_1^8)	(Y_{1}^{4})
<i>SU</i> (2) _{<i>L</i>}	1	1	2	2	1	1	1	2	-	-	-	-	-
$U(1)_Y$	1	1	-1/2	-1/2	0	0	0	$\pm 1/2$	-	-	-	-	-
S_3	2	1	2	1	2	1	1	1	2	2	2	1	1
K _l	1	-1	1	1	1	3	5	0	2	4	6	8	4

$$m_{\nu}^{3\times3} = M_D M_R^{-1} M_S^T (M_S M_R^{-1} M_S^T)^{-1} M_S (M_R^{-1})^T M_D^T - M_D M_R^{-1} M_D^T$$
(13)

Figure: CPV sensitivity of the SNSI diagonal parameters ($\eta_{ee}, \eta_{\mu\mu}$ and $\eta_{\tau\tau}$) for DUNE and P2SO experiment.

Octant

Figure: Octant sensitivity of the SNSI diagonal parameters ($\eta_{ee}, \eta_{\mu\mu}$ and $\eta_{\tau\tau}$) for DUNE and P2SO experiments.

Formula dependencies

$$\sin 2\theta_{13}^{'} = \frac{a_{13}}{\sqrt{a_{13}^2 + b_{13}^2}} \tag{14}$$

where

$$\begin{aligned} a_{13} &= \left[2V_m + 2\Delta m_{31}^2 \eta_{ee}^2 + (m_1 + m_2 + 2m_3) \sqrt{\Delta m_{31}^2} \eta_{ee} + \sqrt{\Delta m_{31}^2} \eta_{ee} (m_1 - m_2) \cos 2\theta_{12} \right] \sin 2\theta_{13}, \\ b_{13} &= 2 \left[\Delta m_{31}^2 - \Delta m_{21}^2 \sin^2 \theta_{12} - V_m \cos 2\theta_{13} + 2m_3 \sqrt{\Delta m_{31}^2} \eta_{ee} \sin^2 \theta_{13} \right. \\ \left. - \Delta m_{31}^2 \eta_{ee}^2 \cos 2\theta_{13} - 2\sqrt{\Delta m_{31}^2} \eta_{ee} \cos^2 \theta_{13} \left(m_1 \cos^2 \theta_{12} + m_2 \sin^2 \theta_{12} \right) \right]. \end{aligned}$$
(15)

$$\sin 2\theta_{12}^{'} = \frac{-a_{12}}{\sqrt{a_{12}^2 + b_{12}^2}}, \qquad (16)$$

where,

$$\begin{aligned} \mathbf{a}_{12} &= \sin 2\theta_{12} \left[2\Delta m_{21}^2 \cos \theta_{13}^{'} + \sqrt{\Delta m_{31}^2} \eta_{ee} (m_2 - m_1) \left(\cos \theta_{13}^{'} + \cos(2\theta_{13} + \theta_{13}^{'}) \right) \right], \\ b_{12} &= 2 \left\{ -\cos^2 \theta_{12} \left(\Delta m_{21}^2 - 2\sqrt{\Delta m_{31}^2} m_1 \eta_{ee} \cos \theta_{13} \cos \theta_{13}^{'} \cos(\theta_{13} + \theta_{13}^{'}) \right) \\ &+ \cos^2 \theta_{13}^{'} \left(\Delta m_{21}^2 \sin^2 \theta_{12} + \cos^2 \theta_{13} \left[\Delta m_{31}^2 \eta_{ee}^2 + V_m + 2\sqrt{\Delta m_{31}^2} \eta_{ee} m_2 \sin^2 \theta_{12} \right] \right) \\ &+ \sin^2 \theta_{13}^{'} \left(\Delta m_{31}^2 + \sin^2 \theta_{13} \left[\Delta m_{31}^2 \eta_{ee}^2 + V_m + 2\sqrt{\Delta m_{31}^2} \eta_{ee} m_3 \right] \right) \right\} \\ &- \frac{1}{2} \left[2\Delta m_{31}^2 \eta_{ee}^2 + \sqrt{\Delta m_{31}^2} \eta_{ee} (m_2 + 2m_3) + 2V_m \\ &- \sqrt{\Delta m_{31}^2} \eta_{ee} m_2 \cos 2\theta_{12} \right] \sin 2\theta_{13} \sin 2\theta_{13}^{'} . \end{aligned}$$

(17)

$$\begin{split} \Delta_{21}^{\text{eff}} &= \frac{1}{8E} \left[\cos 2\theta_{12}^{'} \left\{ \Delta m_{21}^{2} - 2\Delta m_{31}^{2} \left(1 + \eta_{ee}^{2} \right) - \sqrt{\Delta m_{31}^{2}} \eta_{ee} \left(m_{1} + m_{2} + 2m_{3} \right) \right. \\ &- 2V_{m} + \left(2\Delta m_{31}^{2} - \Delta m_{21}^{2} \right) \cos 2\theta_{13}^{'} - \sqrt{\Delta m_{31}^{2}} \eta_{ee} \left(m_{1} + m_{2} - 2m_{3} \right) \left(\cos 2\theta_{13} + \cos 2\theta_{13}^{'} \right) \\ &- \left(2\Delta m_{31}^{2} \eta_{ee}^{2} + \sqrt{\Delta m_{31}^{2}} \eta_{ee} \left(m_{1} + m_{2} + 2m_{3} \right) + 2V_{m} \right) \cos 2(\theta_{13} + \theta_{13}^{'}) \\ &+ \cos 2\theta_{12} \left[3\Delta m_{21}^{2} + \sqrt{\Delta m_{31}^{2}} \eta_{ee} \left(m_{2} - m_{1} \right) + \Delta m_{21}^{2} \cos 2\theta_{13}^{'} \right. \\ &+ \left. \sqrt{\Delta m_{31}^{2}} \eta_{ee} \left(m_{2} - m_{1} \right) \left(\cos 2\theta_{13} + 2\cos \theta_{13} \cos(\theta_{13} + 2\theta_{13}^{'}) \right) \right] \right\} \\ &+ \left. 2 \left(\left[2\Delta m_{21}^{2} + \sqrt{\Delta m_{31}^{2}} \eta_{ee} \left(m_{2} - m_{1} \right) \right] \cos \theta_{13}^{'} + \sqrt{\Delta m_{31}^{2}} \eta_{ee} \left(m_{2} - m_{1} \right) \cos \theta_{13}^{'} \right] \right\} \\ &\times \sin 2\theta_{12} \sin 2\theta_{12}^{'} \right], \end{split}$$
(18)

$$\begin{split} \Delta_{31}^{\text{eff}} &= \frac{1}{4E} \Bigg[\left(\Delta m_{21}^2 + \sqrt{\Delta m_{31}^2} \eta_{ee}(m_2 - m_1) \cos^2 \theta_{13} \right) \cos \theta_{13}' \sin 2\theta_{12} \sin 2\theta_{12}' \\ &+ 2 \cos^2 \theta_{13}' \left(\Delta m_{31}^2 + \cos^2 \theta_{12}' \Bigg[-\Delta m_{21}^2 \sin^2 \theta_{12} - \cos^2 \theta_{13} \left(\Delta m_{31}^2 \eta_{ee}^2 + V_m \right) \\ &+ 2 \sqrt{\Delta m_{31}^2} \eta_{ee} \left(m_1 \cos^2 \theta_{12} + m_2 \sin^2 \theta_{12} \right) \right) \Bigg] + \Bigg[\Delta m_{31}^2 \eta_{ee}^2 + 2 \sqrt{\Delta m_{31}^2} \eta_{ee} m_3 + V_m \Bigg] \sin^2 \theta_{13} \Bigg) \\ &+ \sin \theta_{13}' \Bigg\{ \frac{1}{2} \sqrt{\Delta m_{31}^2} \eta_{ee} \left(m_1 - m_2 \right) \sin 2\theta_{12}' \sin 2\theta_{12} \sin 2\theta_{13} \\ &+ 2 \left(\Delta m_{21}^2 \sin^2 \theta_{12} + \cos^2 \theta_{13} \left[\Delta m_{31}^2 \eta_{ee}^2 + V_m + 2 \sqrt{\Delta m_{31}^2} \eta_{ee} m_2 \sin^2 \theta_{12} \right] \right) \sin \theta_{13}' \\ &- 2 \cos^2 \theta_{12}' \left(\Delta m_{31}^2 + \left[\Delta m_{31}^2 \eta_{ee}^2 + 2 \sqrt{\Delta m_{31}^2} \eta_{ee} m_3 + V_m \right] \sin^2 \theta_{13} \right) \sin \theta_{13}' \Bigg\} + \left(1 + \cos^2 \theta_{12}' \right) \\ &\times \left(\Delta m_{31}^2 \eta_{ee}^2 + \sqrt{\Delta m_{31}^2} \eta_{ee} m_3 + V_m + \sqrt{\Delta m_{31}^2} \eta_{ee} m_2 \sin^2 \theta_{12} \right) \sin 2\theta_{13} \sin 2\theta_{13}' \\ &+ \cos^2 \theta_{12} \left(-2\Delta m_{21}^2 \sin^2 \theta_{12}' + \sqrt{\Delta m_{31}^2} \eta_{ee} m_1 \left(4 \cos^2 \theta_{13} \sin^2 \theta_{13}' \right) \\ &+ \left(1 + \cos^2 \theta_{12}' \right) \sin 2\theta_{13} \sin 2\theta_{13}' \right) \Bigg]. \end{split}$$

(19)