Physics opportunities with kaon decay-at-rest neutrinos: search for sterile neutrino and non-standard interactions

Aman Gupta

Saha Institute of Nuclear Physics, Kolkata, India

in collaboration with Supriya Pan, Sushant Raut, Poonam Mehta and Atika Fatima

17TH INTERNATIONAL CONFERENCE ON INTERCONNECTIONS BETWEEN PARTICLE PHYSICS AND COSMOLOGY

PPC 2024

14 -18 October 2024, Hyderabad, India

October 15, 2024

Introduction: neutrino oscillation and new physics

- > Neutrino flavour oscillation arises from mixing between flavour states (v_e , v_μ , v_τ) and mass eigenstates (v_1 , v_2 , v_3) of neutrinos.
- The 3-flavour oscillation probability depends upon 3 mixing angles ($\theta_{12}, \theta_{13}, \theta_{23}$), 2 independent mass squared differences ($\Delta m_{21}^2, \Delta m_{31}^2$) and 1 CP phase δ_{CP} .
- > In three flavour standard neutrino oscillation picture the important unknown parameters are
 - 1. Sign of Δm_{31}^2 (Neutrino mass ordering)
 - **2**. δ_{CP} (CP violating phase)
 - **3**. Octant of θ_{23} ($\theta_{23} > 45^{\circ}$ or $\theta_{23} < 45^{\circ}$)
- While the standard there flavour oscillation framework is firmly established by current data; subdominant effects can not be ruled out completely
- > Current and future neutrino oscillation experiments are aimed to measure these parameters. But...
- There are several "New Physics" scenarios which can significantly impact the determination of these unknowns
 http://dx.doi.org/10.21468/SciPostPhysProc.2.001
- ► New Physics:
 - **1.** Sterile neutrinos
 - 2. Non-standard interactions (NSIs)
 - 3. Neutrino decoherence and decay
 - 4. Unitarity violation
 - **5.** LIV/CPT, etc...

Neutrino flavour transition provides unique opportunity to search for physics beyond the Standard Model in oscillation experiments

Neutrinos from kaon-decay-at-rest (KDAR)

- > Two-body decay of charged kaons at rest produce mono-energetic beam of muon neutrinos at ~236 MeV
- > Because of their KNOWN energy KDAR neutrinos are ideal for a cross section measurement
- MiniBOONE (PRL 120, 141802), and JSNS² experiments (arXiv:1705.08629) have observed KDAR neutrinos so far
- We use data from JSNS² (0.7-0.8 MW beam)

> 730 muon events including 692 signal + 38 background

JSNS² as source for KDAR neutrino signal

- The J-PARC Sterile Neutrino Search at the J-PARC Spallation Neutron Source (JSNS²) experiment will produce such types of neutrinos with decay-at-rest processes of pions, muons, and kaons.
- > Primary aim of the experiment: Probe sterile neutrinos with $\Delta m^2 \sim 1 eV^2$ from $\nu_{\mu} \rightarrow \nu_e$ oscillations at a short baseline (24 meters)
- > 17 t Gd-loaded liquid scintillator detector
- Coincident signal between initial neutrino interaction and subsequent decay provides excellent background rejection

Neutrino-matter interactions: Standard (SI) and non standard (NSI)

> In the SM there are two ways of interacting neutrinos with matter; Charged Current and Neutral Current

> The Charged Current Lagrangian is given by

$$\mathcal{L}_{cc}^{eff} = -\frac{4G_F}{\sqrt{2}} [\overline{\nu_e}(p_3)\gamma_{\mu}P_L\nu_e(p_2)][\bar{e}(p_1)\gamma^{\mu}P_Le(p_4)].$$
Flavour-dependent

$$V_{cc} = -\langle \nu_e e(p_e, s_e) | \mathcal{L}_{eff}^{cc} | \nu_e e(p_e, s_e) \rangle$$

$$V_e(\overline{\nu_e}) \text{ only } Flavour-independent$$

$$V_{cc} = -\frac{G_F}{\sqrt{2}} [\bar{e}\gamma^{\mu}(1-\gamma_5)\nu_e] [\bar{\nu_e}\gamma_{\mu}(1-\gamma_5)e]$$

$$\lim_{it does not affect neutrino oscillation significantly$$

Aman Gupta, SINP Kolkata, India, PPC 2024

Neutrino-matter interactions: Standard (SI) and non standard (NSI)

Non-Standard neutrino interactions are the new interactions and couplings between neutrinos and matter fermions beyond those in the SM. It could be responsible for sub-leading effects in neutrino oscillation.

NSI Lagrangian:

 $\mathcal{L}_{NSI}^{NC} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \epsilon_{\alpha\beta}^{f,P} (\bar{\nu_{\alpha}}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf),$

- Modify the neutrino coherent-forward scattering with matter over long-baselines aka "**Propagation NSI**" $\propto E_{\nu}$, ρ
- > NSIs which affect neutrino production or detection involve Charged Current processes

$$\mathcal{L}_{NSI}^{CC} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \epsilon_{\alpha\beta}^{f,P} (\bar{\nu_{\alpha}}\gamma^{\mu}P_L I_{\beta}) (\bar{f}\gamma_{\mu}Pf'),$$

For most experiments, neutrinos are produced from pion decay and detected through their interactions with nucleons, i.e. they are sensitive to the source/detector NSI parameters $\epsilon^{ud}_{\alpha\beta}$

In this work we use neutrinos from kaon decay to probe a different family of NSI parameters: $\epsilon_{\alpha\beta}^{us}$

Neutrino oscillations with source NSI

- > In the SM, interactions of charged leptons with neutrinos are flavour-diagonal, i.e. $|v_{\alpha}^{s}\rangle = |v_{\alpha}\rangle$.
- ► However, the inclusion of CC-NSI can alter this and the neutrino produced in association with the charged lepton l_{α} can also have an admixture of other flavour v_{β} , i.e. $|v_{\alpha}^{s}\rangle = \sum_{\beta} \left(\delta_{\alpha\beta} + \epsilon_{\alpha\beta}^{ff'}\right) |v_{\beta}\rangle$
- Source NSIs induce non-unitarity: Non-trivial normalization of the states
- > For KDAR neutrinos $|\nu_{\mu}^{s}\rangle$ will be modified as $|\nu_{\mu}^{s}\rangle$

The source NSI parameters relevant for this work

$$\rangle = \left(\mathbb{I} + \varepsilon^{ff'} \right)_{\mu\alpha} |\nu_{\alpha}\rangle = \left(\mathbb{I} + \varepsilon^{ff'} \right)_{\mu\alpha} U_{\alpha i} |\nu_{i}\rangle$$

$$\varepsilon^{us}_{\alpha\beta} = \begin{bmatrix} \varepsilon^{s}_{ee} & \varepsilon^{s}_{e\mu} & \varepsilon^{s}_{e\tau} \\ \varepsilon^{s}_{\mu e} & \varepsilon^{s}_{\mu\mu} & \varepsilon^{s}_{\mu\tau} \\ \varepsilon^{s}_{\tau e} & \varepsilon^{s}_{\tau\mu} & \varepsilon^{s}_{\tau\tau} \end{bmatrix}$$

For very short baselines (L/E << 1), only (standard) survival amplitudes contribute, giving rise to 'zero-distance flavour conversion'</p>

Oscillation Probabilities

$$P_{\mu\alpha} = |\sum_{\beta} (\mathbb{I} + \varepsilon^{us})_{\mu\beta} \mathcal{A}_{\beta\alpha}^{SM}|^{2} \text{ (up to a normalization factor)}$$
$$P_{\mu e} = |\varepsilon_{\mu e}^{us}|^{2} / \left(|\varepsilon_{\mu e}^{us}|^{2} + |1 + \varepsilon_{\mu\mu}^{us}|^{2} \right)$$
$$P_{\mu\mu} = |1 + \varepsilon_{\mu\mu}^{us}|^{2} / \left(|\varepsilon_{\mu e}^{us}|^{2} + |1 + \varepsilon_{\mu\mu}^{us}|^{2} \right)$$

Results: oscillation probability and event spectrum

- \succ We use GLoBES to compute the event spectrum and sensitivity of JSNS² by implementing our own NSI probability engine.
- > Only one NSI parameter is considered at a time.

 \succ The effect of only $\epsilon_{\mu\mu}^{us}$ is wiped out due to the probability normalization by ν_{μ} disappearance events

Results: source NSI constraint from KDAR

 \succ We present the result for both Current data (calibrated to 730 v_{μ} events) and future data (calibrated to 40,000 v_{μ} events)

The bounds by JSNS² on NSI parameter $|\epsilon_{\mu e}^{us}| < 0.03 \ (0.005)$ at 99% C.L. with current (future) statistics

Search for Sterile neutrinos from KDAR

- Over the past few decades, several anomalous results have been observed in experiments involving the production and detection of neutrinos over short baselines (less than 1 km). To explain these anomalies, sterile neutrino oscillations with a mass of around 1 eV have been proposed as a key solution.
- The short-baseline oscillation behaviour of KDAR neutrinos will be altered in the presence of eV-scale sterile neutrino: new mixing angles, phases, mass-squared difference

In "3+1 model"

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix}$$

In the short-baseline limit $\left(\frac{\Delta m_{21}^2 L}{E} \ll 1, \frac{\Delta m_{31}^2 L}{E} \ll 1\right)$, where standard oscillations are suppressed, the $\nu_{\mu} \rightarrow \nu_{e}$ probability is

$$P_{\mu e}^{\rm sbl} \simeq 4|U_{e4}|^2|U_{\mu 4}|^2\sin^2\frac{\Delta m_{41}^2L}{4E}$$

We compare the **KDAR neutrino** spectra with standard oscillations versus with sterile neutrinos to put bounds on the sterile parameter space

15-10-2024

KDAR event spectra at JSNS² with sterile neutrino

Aman Gupta, SINP Kolkata, India, PPC 2024

Results: constraints on sterile neutrino parameter space

Sensitivity of JSNS² (with KADAR only data) in constraining θ_{14} , θ_{24} and Δm_{41}^2 from appearance and disappearance channel data

Results: constraints on sterile neutrino parameter space

Concluding Remarks

- The possibility of new physics searches such as source NSI and sterile neutrino have been explored exploiting KDAR neutrino facility at JSNS² experiment
- □ Unlike propagation NSI, source (or production) NSI is independent of matter potential and neutrino energy and can give rise to 'zero-distance flavour conversion'
- Constraints on the non-standard coupling, for the first time in us sector (strange quark) have been obtained:

 $|\varepsilon_{\mu e}^{\rm us}| < 0.03$ (0.005) at 99% C.L. with current (future) statistics

□ We also find that with the JSNS² experiment and future KDAR only data Active sterile mixing can be probed down to $|U_{\mu4}^2| \sim 10^{-3}$ for $\Delta m_{41}^2 \sim 10 \ eV^2$

Monoenergetic 236 MeV neutrinos from kaon decay-at-rest, can also be used to study neutrino-nucleus cross-section

Thank you 😳

NSI at Production and Detection Level

Neutrino states at sources and detectors:

$$egin{array}{rcl} |
u_{lpha}^{s}
angle &=& |
u_{lpha}
angle + \sum_{eta=e,\mu, au}arepsilon_{lphaeta}|
u_{eta}
angle &=& (1+arepsilon^{s})U|
u_{m}
angle \ \langle
u_{eta}^{d}| &=& \langle
u_{eta}| + \sum_{lpha=e,\mu, au}arepsilon_{lphaeta}\langle
u_{lpha}| = \langle
u_{m}|U^{\dagger}[1+(arepsilon^{d})^{\dagger}] \end{array}$$

Superpositions of pure orthonormal flavor eigenstates

Grossman (1995); Gonzalez-Garcia *et al.* (2001); Bilenky, Giunti (1993); Meloni *et al.* (2010)

First clear KDAR signal

(Toward first precise KDAR measurement)

KDAR Backgrounds

- Dominant background source is pion decay-in-flight (DIF) neutrinos
- DIF background spectral shape estimated with MC
- Both NuWro & GiBUU event generators are used for DIF background simulation
- Normalization estimated using the kinematically disallowed (>150MeV) portion of the KDAR spectrum

