Implications of Long-Range Forces in P2SO and T2HKK Experiments JHEP 09 (2024), 100

Rudra Majhi

Nabarangpur College, Nabarangpur, Odisha

15th October, 2024

Introduction

- Introduction to Long-Range Force (LRF)
- Simulation Details
- Impacts of LRF on long-baseline experiment
- Summary

- Neutrinos are the most elusive particle postulated by Pauli in 1930.
- Several dedicated experiments have observed the phenomenon of neutrino flavor transitions during their propagation.

- Neutrino Oscillation confirms the neutrino mass and mixing.
- Also resolve the Solar and Atmospheric neutrino Anomalies.
- Neutrino mass states (ν₁, ν₂, ν₃) are related to flavour states by Unitary mixing matrix.

$$|\nu_{\alpha}\rangle = \sum U_{\alpha i}|\nu_{i}\rangle$$
 $\alpha = e, \mu, \tau, i = 1, 2, 3$

Flavour States

Mass States

 The Mixing Matrix is Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

$$U_{\rm PMNS} = R(\theta_{23})O(\theta_{13}, \delta_{13})R(\theta_{12}),$$

where
$$O(\theta_{13}, \delta_{13}) = \begin{pmatrix} \cos \theta_{13} & \sin \theta_{13}e^{-i\delta_{13}} \\ -\sin \theta_{13}e^{i\delta_{13}} & \cos \theta_{13} \end{pmatrix},$$
$$R(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

NuFIT 6.0 (2024)

		Normal Ordering ($\Delta \chi^2 = 0.6$)		Inverted Ordering (best fit)			
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	-	
lata	$\sin^2 \theta_{12}$	$0.307\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$	$0.308^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.345$	• Precise measurement	
eric d	$\theta_{12}/^{\circ}$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	of noutring assillation	
sphe	$\sin^2 \theta_{23}$	$0.561^{+0.012}_{-0.015}$	$0.430 \rightarrow 0.596$	$0.562^{+0.012}_{-0.015}$	$0.437 \rightarrow 0.597$	or neutrino oscination	
atmo	$\theta_{23}/^{\circ}$	$48.5_{-0.9}^{+0.7}$	$41.0 \rightarrow 50.5$	$48.6^{+0.7}_{-0.9}$	$41.4 \rightarrow 50.6$	parameters.	
SK	$\sin^2 \theta_{13}$	$0.02195\substack{+0.00054\\-0.00058}$	$0.02023 \to 0.02376$	$0.02224^{+0.00056}_{-0.00057}$	$0.02053 \to 0.02397$		
out	$\theta_{13}/^{\circ}$	$8.52^{+0.11}_{-0.11}$	$8.18 \rightarrow 8.87$	$8.58^{+0.11}_{-0.11}$	$8.24 \rightarrow 8.91$	* 1 X: 0410 05200 4	
) with	$\delta_{\mathrm{CP}}/^{\circ}$	177^{+19}_{-20}	$96 \to 422$	285^{+25}_{-28}	$201 \to 348$	NuFIT 6.0 (2024)	
ICI	$\frac{\Delta m^2_{21}}{10^{-5} \ {\rm eV}^2}$	$7.49\substack{+0.19 \\ -0.19}$	$6.92 \rightarrow 8.05$	$7.49\substack{+0.19\\-0.19}$	$6.92 \rightarrow 8.05$	www.nu-fit.org.	
	$\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$	$+2.534\substack{+0.025\\-0.023}$	$+2.463 \rightarrow +2.606$	$-2.510\substack{+0.024\\-0.025}$	$-2.584 \rightarrow -2.438$		

Implications of LRF

Mass Hierarchy.

- Absolute scale of neutrino mass is unknown to us.
- Nature of Neutrinos: Dirac or Majorana type?

Unknowns of 3 ν framework

CP Violation

C[Particle] = Antiparticle Parity changes the helicity of a state.

Is
$$P(\nu_{lpha}
ightarrow \nu_{eta})
eq P(\overline{
u}_{lpha}
ightarrow \overline{
u}_{eta})?$$

• CP non-invariance comes from δ_{CP} phase in the Leptonic mixing matrix U.

- CP violation can explain the matter-anti matter asymmetry in universe.
- *A. S. Joshipura et al. JHEP 08 (2001), 029

Unknowns of 3 ν framework

Octant of θ_{23}

• Atmospheric mixing angle (θ_{23}) deviates from maximum-mixing value 45°

 $heta_{23} < 45^\circ$ Lower Octant (LO) $heta_{23} > 45^\circ$ Higher Octant (HO)

- Are there more than 3 neutrino mass eigenstates? (Do sterile neutrinos exit?)
- Do neutrinos break the CPT and Lorentz invariance?
- Are there Non-Standard Interaction (NSI) effects?

- The unknowns in neutrino sector can be studied through Long Baseline neutrino oscillation experiment.
- Earth matter effect in Long Baseline experiment will help to study the unknowns.
- It can give new signals of beyond standard model.

* M. Freund, Phys. Rev. D 64 (2001) 053003, arXiv:hep-ph/0103300.

- Standard Model (SM) can be extended by adding extra U(1) symmetry to it.
- U(1) symmetry with combination of Lepton symmetry
 L_e - L_μ, L_e - L_τ and L_μ - L_τ can be added to SM without
 any anomaly.
 (* R. Foot, Mod. Phys. Lett. A 6 (1991) 527.
 X.G. He et. al., Phys. Rev. D 43 (1991) 22.
)
- To have nonzero mass and non-maximal mixing of flavors, these symmetries have to be broken.
- New Vector Boson (Z') introduced for these symmetries can mediated interaction between neutrino and matter.

Introduction to LRF

- For ultralight mass of gauge boson Z' the force between matter particles and neutrinos can be extended over long distances :Long Range Force (LRF).
- LRF depends on the leptonic content and the mass of an object.
- Interactions induced by LRF parameter alter the matter potential in neutrino propagation.

* A.S. Joshipura, Phys. Lett. B 584 (2004) 103 [hep-ph/0310210] [INSPIRE].

• The effective potential for neutrinos on Earth

$$V_{ej} = g_{ej}^2 \frac{N_e}{4\pi r} e^{-M_{Z_{ej}}r}, \text{ where } j = \mu, \tau \qquad (1)$$

$$V_{\mu\tau} = g_{\mu\tau}\zeta - \sin\theta_w \chi \frac{e}{4\sin\theta_w \cos\theta_w} \frac{N_n}{4\pi r} e^{-M_{Z_{ej}}r}$$
(2)

 $g_{\alpha\beta}$ are the gauge couplings, $M_{Z\alpha\beta}$ are gauge boson mass. $N_n \approx \frac{N_e}{4}$, N_e is the number of electron inside the Sun.

Introduction to LRF

• The effective Hamiltonian for neutrino in presence of matter potential and LRF potential.

$$H_{\nu/\overline{\nu}} = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} \end{bmatrix} \pm H_{\text{matter}} \pm H_{LRF}, \quad (3)$$

with

$$H_{LRF} = \begin{cases} \text{diag}(V_{e\mu}, -V_{e\mu}, 0) & \text{for } U(1)_{L_e - L_{\mu}}, \\ \text{diag}(V_{e\tau}, 0, -V_{e\tau}) & \text{for } U(1)_{L_e - L_{\tau}}, \\ \text{diag}(0, V_{\mu\tau}, -V_{\mu\tau}) & \text{for } U(1)_{L_{\mu} - L_{\tau}}, \end{cases}$$
(4)

where $+\mbox{ sign}$ is for neutrino and $-\mbox{ sign}$ is for antineutrino flavor states

同 ト イ ヨ ト イ ヨ ト

Simulation Details

Globes

- General Long Baseline Experiment Simulator (GLoBES).
- C-library based software package for simulation of experiments. * P. Huber et al., Comput. Phys. Commun. 167, 195 (2005)

* P. Huber et al., Comput. Phys. Commun. 167, 195 (2005)
 * P. Huber et al., Comput. Phys. Commun. 177, 432 (2007)

Protvino to Super-ORCA (P2SO)

- Neutrinos will be produced at U-70 synchrotron located at Protvino, Russia.
- Neutrinos will be detected at Super-ORCA detector at distance of 2595 km away.
- 10 times more densed detector than ORCA.
- Higher energy resolution capability.
- Beam power : 450 KW (4 \times 10²⁰ POT)
- Run time : 6 years (3 yrs + 3 yrs)

* J. Hofestdt, et al., PoS ICRC2019 (2020)
 911, [arXiv:1907.12983]
 * A. V. Akindinov et al., Eur. Phys. J. C 79 (2019), no. 9 758, [arXiv:1902.06083].

・ロト ・同ト ・ヨト ・ヨト

Simulation Details

- T2HKK is an alternative choice to T2HK, where the proposed FD is placed in Korea, which is 1100 km away from the JPARC facility with an off-axis angle of 1.5°.
- The other detector (187 kt) will be placed at 295 km with an off-axis angle of 2.5°.
- Neutrino beam power 1.3 MW and a total exposure 27×10^{21} POT.
- Time Period: 10 Years (2.5 Years in ν mode and 7.5 Years in ν mode)

* PTEP 2018 (2018) 063C01 [arXiv:1611.06118] [IN SPIRE].

Result: Effect at Probability Level

æ

∃ >

Sensitivity Limits on LRF Parameters

Figure: Sensitivity limits on LRF parameters for $\delta_{CP}(\text{true}) = 232^{\circ}$.

LRF Potential	SK	INO	DUNE	T2HK	P2SO	T2HKK
[eV]					(This work)	(This work)
$V_{e\mu}(imes 10^{-14})$	71.5	1.56	1.46	3.45	0.23	2.40
$V_{e au}(imes 10^{-14})$	83.2	1.56	1.03	3.43	0.23	2.15
$V_{\mu au}(imes 10^{-14})$	-	-	0.67	1.84	0.13	1.5

 Table: Sensitivity limits at 90% C.L. on LRF parameters from several experiments.

 Compared and the several experiments.

Sensitivity Limits on LRF Parameters

Figure: Sensitivity limits on LRF parameters for $\delta_{CP}(\text{true}) = 232^{\circ}$.

- The dip is mainly due to the contribution of disappearance neutrino events.
- We have verified the dip is due to the octant degeneracy in the disappearance channel.

Image: A image: A

Figure: CPV sensitivities as a function of $V_{\alpha\beta}$ for the true value of $\delta_{CP} = -90^{\circ}$ for P2SO and T2HKK experiments.

• The kinks appear due to the degeneracy associated with the parameter $\theta_{23}.$

Effects on Octant Sensitivity

Figure: Octant sensitivity as a function of $V_{\alpha\beta}$ for P2SO and T2HKK experiments. We have considered the parameter θ_{23} to be in LO.

• The kinks appear due to the parameter θ_{23} .

Effects on Mass Hierarchy Sensitivity

Figure: MH sensitivity as a function of $V_{\alpha\beta}$ for two different true values of δ_{CP} for P2SO and T2HKK experiments.

We have verified that these kinks are due to the large backgrounds of the P2SO experiment.

Sensitivity limits on $M_{Z_{\alpha\beta}}$ and $g_{\alpha\beta}$

Figure: Allowed range for gauge coupling vs mass of gauge boson for LRF potential in all three cases at 2σ C.L. for P2SO and T2HKK experiments.

Experiment	$L_e - L_\mu$	$L_e - L_{ au}$	$L_{\mu}-L_{ au}$
P2SO (This work)	$2.66 imes 10^{-27}$	$2.48 imes 10^{-27}$	$6.03 imes 10^{-27}$
T2HKK (This work)	$7.47 imes 10^{-27}$	$7.12 imes 10^{-27}$	$6.637 imes 10^{-26}$
T2HK	$1.30 imes10^{-26}$	$1.24 imes10^{-26}$	$4.31 imes10^{-26}$
DUNE	$8.55 imes10^{-27}$	$7.03 imes 10^{-27}$	$2.59 imes 10^{-26}$

Table: Projected upper bound on $g_{\alpha\beta}$ from various experiments.

Conclusion

- The new lightweight mediator can gives rise to a long range potential which can affect the neutrino oscillation.
- LRF can be probed in neutrino oscillation experiment.
- P2SO can give the strongest bound on the LRF parameters .
- LRF parameters can affect the CPV Sensitivity, Octant Sensitivity and Mass Hierarchy Sensitivity for both P2SO and T2HKK experiment.
- Obtained bounds on the mass of the new gauge boson and its coupling strength associated with the LRF. Bounds obtained for P2SO are better than T2HKK experiment.

Thank You...