Impacts of Z3 symmetric dark matter models on global 21–cm signal

Debarun Paul ISI, Kolkata

JCAP 11(2023)015 arXiv: 2308.04955 Collaborators: A. Dey, A. D. Banik, S. Pal

PPC 2024 17th International Conference on Interconnections between Particle Physics and Cosmology IIT Hyderabad

Primary Agenda Topics

- Relation between particle DM model and cosmology
- Analysis with EDGES observation
- Signatures at Dark Ages
- Impacts at other eras
- Conclusion

Why particle physics+cosmology...

Particle physics provides behaviour of elementary particles Cosmology and astrophysics help us to understand the development of the Universe

+

 \rightarrow

Both of them, togetherly, can bring more stringent constraints on the properties of the particles

Years after the Big Bang

Dark age no astrophysical objects ($z \ge 30$)

Cosmic Dawn first stars, galaxies formed $(z \sim 30)$

Reionization everything started to ionize $again(z \approx 30-5)$

What the 21-cm signal is ...

Wavelength, $\lambda \approx 21$ cm

Fig. Credit: blog of Abraham Loeb

Carries the information of the 'medium'

An important probe for Dark Matter

$$T_{21} \simeq 27 x_{\rm HI} \left(\frac{\Omega_b h^2}{0.023} \right) \left(\frac{0.15}{\Omega_m h^2} \frac{1+z}{10} \right)^{\frac{1}{2}} \left(1 - \frac{T_{\gamma}}{T_s} \right) \, {
m mK}$$

where,
$$T_s^{-1} = \frac{T_{\gamma}^{-1} + x_k T_k^{-1} + x_{\alpha} T_{\alpha}^{-1}}{1 + x_k + x_{\alpha}}$$

Equation Ref.: Pritchard et. al. Rep. Prog. Phys. 75, 086901 (2012)

EDGES: *Experiment to Detect the Global Epoch of Reionization Signature* Equation Ref.: *Pritchard et. al. Rep. Prog. Phys. 75, 086901 (2012)*

EDGES data: <u>http://loco.lab.asu.edu/edges/edges-data-release/</u>

Z3 Symmetric Dark Matter

 $X \rightarrow exp(i2\pi/3)X$

Semi-annihilating Dark Matter

Co-SIMP $2 \rightarrow 3$ interaction

Semi-annihilating Dark Matter

DP, A.Dey, A.D.Banik, S.Pal (JCAP 11(2023)015)

Semi-annihilating Dark Matter

Wait!!... there is a debate

Impacts at dark ages

- Lunar Surface Electromagnetics Explorer (LuSEE Night)
- Dark Ages Polarimeter PathfindER (DAPPER)
- Probing ReionizATion of the Universe using Signal from Hydrogen (PRATUSH)

• ...

Impacts at dark ages

- Lunar Surface Electromagnetics Explorer (LuSEE Night)
- Dark Ages Polarimeter PathfindER (DAPPER)
- Probing ReionizATion of the Universe using Signal from Hydrogen (PRATUSH)

• ...

Impacts at dark ages

Effects are distinguishable

S.Pal

$$\omega_b, \omega_{dm}, \theta_s, n_s, A_s, \tau_{reio}, \Gamma_{int}, \tilde{f}$$

cosmological params model params
 $\sqrt{\frac{M_{\rm DM}/M_{\rm DM}^{(r)}}{M_{\rm SM}^3/M_{\rm SM}^{3(r)}}} \frac{\langle \sigma v \rangle}{\langle \sigma v \rangle^{(r)}}$

Planck 2018 (high-*l* TT+TE+EE, low-*l* TT+EE)

DP, A.Dey, A.D.Banik, S.Pal (JCAP 11(2023)015)

Planck 2018 + BAO

DP, A.Dey, A.D.Banik, S.Pal (JCAP 11(2023)015)

Co-SIMP model is consistent

	Planck 2018		Planck 2018+BAO	
Parameter	Co-SIMP	ΛCDM	Co-SIMP	ACDM
	mean $\pm \sigma$	mean $\pm \sigma$	mean $\pm \sigma$	$\mathrm{mean}\pm\sigma$
$100 \omega_b$	2.237 ± 0.015	2.236 ± 0.015	2.245 ± 0.014	2.242 ± 0.014
$\omega_{ m dm}$	0.1201 ± 0.0014	0.1202 ± 0.0014	0.1191 ± 0.0011	0.11933 ± 0.00091
100 θ_s	$1.042\substack{+0.0003\\-0.00031}$	1.04090 ± 0.00031	1.042 ± 0.00028	1.04101 ± 0.00029
$\ln(10^{10}A_s)$	$3.046\substack{+0.016\\-0.017}$	3.045 ± 0.016	$3.046\substack{+0.016\\-0.017}$	3.047 ± 0.014
n_s	$0.9654\substack{+0.0044\\-0.0046}$	0.9649 ± 0.0044	$0.9681\substack{+0.004\\-0.0039}$	0.9665 ± 0.0038
τ_{reio}	$0.0547\substack{+0.0076\\-0.0083}$	$0.05578\substack{+0.0070\\-0.0081}$	$0.05578\substack{+0.0075\\-0.0081}$	0.0561 ± 0.0071
$\Gamma_{\rm int}$		77.0	—	000
\tilde{f}			—	
H_0	$67.35\substack{+0.61\\-0.63}$	67.27 ± 0.60	$67.81\substack{+0.47 \\ -0.48}$	67.66 ± 0.42
σ_8	$0.8122\substack{+0.0074\\-0.0078}$	0.8120 ± 0.0073	$0.8096\substack{+0.0073\\-0.0075}$	0.8111 ± 0.0060

Co-SIMP model is consistent

 $\omega_b, \omega_{\rm dm}, \theta_s, n_s, A_s, \tau_{\rm reio}, \Gamma_{\rm int}, \tilde{f} + N_{\rm eff}$

Impact at dark age

At the dark age, both the models have distinctive impacts

Addressing the EDGES signal

Z3 symmetric DM model has a potential to address the depth of EDGES absorption feature

Retain the success of LCDM at large scale

Our chosen models are consistent with other cosmological obs. e.g. CMB, BAO.

Stands out around the controversy between EDGES and SARAS 3

We are able to show that both the models can sustain for a particular set of model parameters if EDGES needs further reassessment.

DP, A.Dey, A.D.Banik, S.Pal (*JCAP 11(2023)015*)

Impact at dark age

At the dark age, both the models have distinctive impacts

Addressing the EDGES signal

Z3 symmetric DM model has a potential to address the depth of EDGES absorption feature

Retain the success of LCDM at large scale

Our chosen models are consistent with other cosmological obs. e.g. CMB, BAO.

Stands out around the controversy between EDGES and SARAS 3

We are able to show that both the models can sustain for a particular set of model parameters if EDGES needs further reassessment.

DP, A.Dey, A.D.Banik, S.Pal (*JCAP 11(2023)015*)

Thank you!!

Reserved Slides...

Fig. Credit: https://astronomy.stackexchange.com

Semi-annihilating Dark Matter

Co-SIMP 2→3 interaction

Always heats the gas DP, A.Dey, A.D.Banik, S.Pal (JCAP 11(2023)015)

Semi-annihilating Dark Matter

DP, A.Dey, A.D.Banik, S.Pal (accepted for JCAP)

DP, A (accep	Dey, A.D.Banik, S.I <i>oted for JCAP)</i>	Pal				
$\omega_b, \omega_{ m dm}, heta_s, n_s, A_s, au_{ m reio}, \Gamma_{ m int}, ilde{f}$						
		cosmological params	model params			
	Parameter	Prior				
	$100 \omega_b$	Flat, unbounded				
	$\omega_{ m dm}$	Flat, unbounded	$M_{\rm DM}/M_{\rm DM}^{(r)}$ $\langle \sigma v \rangle$			
	100 θ_s	Flat, unbounded	$\int \frac{DM}{\pi^3} \frac{DM}{\pi^3} \frac{\sqrt{r}}{\sqrt{\sigma}} \frac{\sqrt{r}}{\sqrt{\sigma}}$			
	$\ln(10^{10}A_s)$	Flat, unbounded	$\sqrt{M_{\rm SM}^{0}/M_{\rm SM}^{0}}$			
	n_s	Flat, unbounded				
	${ au}_{reio}$	Flat, unbounded				
	$\Gamma_{ m int}$	Flat, $4.47 \times 10^4 \rightarrow 4.47 \times 10^{12}$				
	\widetilde{f}	Flat, $0 \rightarrow 2$				

