Self-interactions of ultralight spinless dark matter to the rescue?

Bihag Dave, **Gaurav Goswami**, "*ULDM self-interactions, tidal effects and tunnelling out of satellite galaxies*," J. Cosmol. Astropart. Phys., 02 (**2024**) 044. E-Print:

● Sayan Chakrabarti, Bihag Dave, Koushik Dutta, Gaurav Goswami, "Constraints on the mass and self-coupling of Ultra-Light Scalar Field Dark Matter using observational

- 2310.19664 [astro-ph.CO]
- Bihag Dave, Gaurav Goswami, "Self-interactions of ULDM to the rescue?," J. Cosmol. Astropart. Phys., 07 (2023) 015. E-Print: 2304.04463 [astro-ph.CO]
- *limits on galactic central mass*," J. Cosmol. Astropart. Phys., 09 (**2022**) 074. E-print: 2202.11081 [astro-ph.CO]

IF⁷ Mahmedabad IIL-III University

Gaurav Goswami

XVII International Conference on Interconnections between Particle Physics and Cosmology Indian Institute of Technology, Hyderabad

^g↵@↵'@' *^U*(') *.* (2) Some observations can probe self couplings of e.g. $\mathcal{O}(10^{-90})$

$$
S = \int d^4x \sqrt{-g} \left(\frac{M_{\rm pl}^2}{2} R - \frac{1}{2} g^{\alpha \beta} \partial_{\alpha} \varphi \partial_{\beta} \varphi - U(\varphi) \right)
$$

$$
U(\varphi) = m_a^2 f^2 \left[1 - \cos \left(\frac{\varphi}{f} \right) \right]
$$

$$
\lambda_a = - \left(\frac{m_a}{f} \right)^2
$$

 $\text{tr, then, } \lambda \sim 10^{-3}$ $m\thicksim 10^{-22}~{\rm eV}$ and $f\thicksim 10^{17}~{\rm GeV},~$ then, $\lambda\thicksim 10^{-96}$

Varia the action weight will give the streament when when we have This non-negligible coupling could often be useful

of the scalar field in any spacetime, ⇥p*g g^µ*⌫ @⌫' ⁼ p*g U*⁰ Could be helpful in uncovering the identity of DM

λ > 0

ding cal
112
*Ca*l

The Punchline…

 $S =$ z
Z d^4x $\sqrt{-g}$ $\sqrt{M_{\rm D}^2}$ pl $\frac{4\frac{1}{\rm pl}}{2}R-\frac{1}{2}$

- Wave Dark Matter
- Self Interactions of Ultra Light Dark Matter
- Observable effects of self coupling I
- Observable effects of self coupling II
- Conclusions

Wave Dark Matter

Dark Matter: particle physics

Microscopic origin?

- •Stable / long lived (lifetime cosmological)
- Electric charge very small (or zero)

- •Spin unknown
-

• Non-gravitational interactions / couplings unknown (but constrained)

Ultra Light Dark Matter

Dark Matter particles

- •Stable
- •Zero electric charge
- •Small mass (how small?)
	- **Note**: non-thermal
- •Zero intrinsic spin (i.e. is scalar or pseudo scalar)
- •Self interactions (inevitable for scalar)
	- •Singlet under SM gauge group

If DM particle mass is too small, it can't be fermion

Wave Dark Matter

- Very small particle mass implies very large number density
- $\bullet\,$ Bosonic quantum fields \rightarrow Particles and waves in classical limits
	- Gamma ray photons vs radio waves
	- •Particle DM vs wave DM
- Ultra light Bosonic Dark matter can be described by classical field equations

LIGHT IS A $\int \frac{1}{\sqrt{1-\frac{1}{2}}}$

Cosmonology with

$$
S = \int d^4x \sqrt{-g} \left(\frac{M_{\rm pl}^2}{2}\right)
$$

- Production: e.g. misalignment mechanism
- oscillates at the bottom of a quadratic potential \mathbf{a} *d*⁴*x*
	- Unlike inflation, dark energy
- **• Linear** perturbations
	- can't be squashed into too small a region
- **Nonlinear** scales 8

Cosmology with UL(SF)DM $\frac{4\frac{1}{\mathrm{pl}}}{2}R-\frac{1}{2}$ $g^{\alpha\beta}\partial_{\alpha}\varphi\partial_{\beta}\varphi-U(\varphi)$! dominated by !*^k* ⇡ *mc*²*/*~, with some small correction terms. Let us assume that this is true even when the self-interactions and gravity are present. In that case, in

• Background dynamics same as that of N.R. particles as long as scalar field p*^g* le potential \sim 10 where, *t^c* = ~*/mc*² is the "Compton time" associated with a property incine σ dominant time evolution captured by *eⁱ ^t m* ≳ 10−²⁸ eV

• Matter power spectrum: small scale power suppression: classical wave the compton time *thassical* wave eV $E_{\rm eff}$, happens to be such that, for a given , the field ϵ *m* $\geq 10^{-23}$ eV

Production mechanism

 $m \gtrsim H_{eq} \approx 10^{-28} \text{ eV}$ $\rho \sim a^{-3}$

P ≪ *ρ*

 $\overline{\mathbb{L}}$

Klein-Gordon-Einstein to Schr terms. Let us as the use the true even when the tru dominated by !*^k* ⇡ *mc*²*/*~, with some small correction schrodinger-Poisson self-interactions and gravity are present. In that case, in Klein-Gordon-Einstein to Schrodinger-Poisson 3.1.3 What is the non-relativistic limit of a field \sim that the oscillation frequency is dominated by *Ê^k* = *m* save for small corrections. This suggests that, in order to successfully that, we introduce the non-relativistic limit, we introduce a complex sta

!

Slowly varying, non-relativistic limit… $\sum_{n=1}^{\infty}$ $\varphi(t,\vec{x}) = -\frac{1}{\sqrt{2}}$ ^p2*^m* $\left[e^{-imt}\Psi(t,\vec{x})+c.c.\right]$ Slowly varying non-relativistic limit and classical limits, let us briefly stop using natural units. \Box T \Box with the following action to deal with the following action to \Box *S* = $\overline{}$ *d*⁴*x* p*^g* $\overline{\text{Slowl}}$ \overline{a} *x*) is very state that we have a consider the contraction of the cost of the $\begin{array}{ccc} \text{if} & \text{$ $\sqrt{2m}$ *^h*¯ changes substantially is *t^c* = ¯*h/*(*mc*²), so, shouldn't change substantially Slowly varying, no $\varphi(t)$ $\sqrt{2m}$ the solution in the solution of the first section of the first se **i** Slowly varying

$$
S=\int d^4x\sqrt{-g}\left(\frac{M_{\rm pl}^2}{2}R-\frac{1}{2}g^{\alpha\beta}\partial_\alpha\varphi\partial_\beta\varphi -U(\varphi)\right)
$$

$$
\Psi(t+m^{-1}) = \Psi(t) + \frac{\dot{\Psi}(t)}{m} + \frac{\ddot{\Psi}(t)}{2m^2} + \cdots
$$

$$
\Psi(t) \gg \frac{\dot{\Psi}(t)}{m} \gg \frac{\ddot{\Psi}(t)}{m^2} \text{ etc}
$$

has dimensions of Energy*/L*³, the canonical scalar field

$$
U(\varphi)=\frac{m^2\varphi^2}{2}+\frac{\lambda\varphi^4}{4!} \\ U(\varphi)=m_a^2f^2\left[1-\cos\left(\frac{\varphi}{f}\right)\right]
$$

field

pl

Self interactions of ULDM?

- Ultra light scalar fields, mass of O (10-22 eV), could act as DM,
- Does this scalar couple to other particles?
- What is the self coupling, λ, of this scalar? • It must exist, the question is, is it small enough be ignored? • This must be established by observations
	-
	-
	- **• Even a very small value of self coupling, λ, can have dramatic implications**

Ultra-light scalar fi

• Benchmark value

- Misalignment mechanism: correct relic abundance
	- if $m \sim 10^{-22}$ eV and $f \sim 10^{17}$ GeV, then $\lambda \sim 10^{-96}$

Benchmark value of self coupling

$$
U(\varphi)=m_a^2f^2\left[1-\cos\left(\frac{\varphi}{f}\right)\right]
$$

$$
\Omega_a \sim 0.1 \left(\frac{f_a}{10^{17} \text{ GeV}} \right)^2 \left(\frac{f_b}{10^{17} \text{ GeV}} \right)^2
$$

 $\lambda_a = -\left(\frac{m_a}{f}\right)^2$

Small self-interactions

chandra.harvard.edu/photo/2006/1e0657/more.html

Bullet cluster constraints on self-interactions

$$
\sigma/m \lesssim 0.5 \text{cm}^2 \text{g}^{-1}
$$

$$
\sigma = \frac{\lambda^2}{32\pi s} \sim \frac{\lambda^2}{32\pi m^2}
$$

 \implies $\lambda \le 10^{-44}$ *m* = 10⁻²² eV

 $\rho = \vert \Psi \vert$ 2 (Mass density)

$$
i \dot{\Psi} = -\frac{1}{2m} \nabla^2 \Psi + m \Phi \Psi + \frac{\lambda}{8m^3} |\Psi|^2 \Psi
$$

$$
\nabla^2 \Phi = 4\pi G |\Psi|^2
$$

$$
\frac{\hbar^2}{2m}\frac{1}{L^2}\Psi \sim \lambda \frac{M}{L^3}\Psi \implies \lambda \sim 4\left(\frac{m}{10^8 \text{ M}_\odot}\right)\left(\frac{\text{kpc}}{\hbar/mc}\right) \sim 10^{-92}
$$

- Thus,
	- What is the **sign** of the self-coupling? I.e. attractive or repulsive?
	- What is the **strength** of the self-coupling?
- Recall: quartic self coupling implies contact interactions i.e. in N.R. limit, interaction PE is $V(\mathbf{r}_i, \mathbf{r}_j)$) = # δ^3 $(\mathbf{r}_i - \mathbf{r}_j)$
- Could eventually help in **identifying** the scalar field i.e. Dark Matter

$$
U(\varphi) = m_a^2 f^2 \left[1 - \cos\left(\frac{\varphi}{f}\right)\right] \qquad \lambda_a = -\left(\frac{m_a}{f}\right)
$$

Sign of self coupling

$$
U(\varphi)\,=\,\tfrac{m^2\varphi^2}{2}+\tfrac{\lambda\varphi^4}{4!}
$$

Gross-Pitaevskii-Poisson equations by *e*≠*imt* and slow variation means that (a) the following hierarchy is maintained: [∫] *^m*≠¹ ˙ [∫] *^m*≠² ¨ [∫] *··· ,* (2.6)

Observable effects of self coupling - I

- •Cores of DM halos formed from wave DM
- •Solve GPP equations
- •Tunable parameters:
	- •Particle mass "m",
	- Self coupling "λ",
	- Number of particles (parameterised by a scaling parameter "s")
- •These parameters affect
	- •density profile,
	- •core mass
	- rotation curve

Parameters and observables

Velocity from density

Simulations suggest a Core-Halo structure:

 $\rho_{DM} = \Theta(r_t - r)\rho_{ULDM}(r) + \Theta(r - r_t)\rho_{CDM}(r)$

• Velocity of a test particle in the gravitational potential of the halo:

$$
v(r) = \sqrt{\frac{GM(r)}{r}} = \sqrt{\frac{4\pi G \int_0^r r'^2 dr' \rho}{r}}
$$

•
$$
\rho_{ULDM}(r)
$$
 is parameterised by $\left\{m, \hat{\lambda}_{ini}, \right\}$

Observed rotation curves

Dark Matter Gas Disk **UGC 5721 (from SPARC database)** $V_{obs} = \sqrt{V_{DM}^2 + \Upsilon_d |V_d| V_d + \Upsilon_b |V_b| V_b + |V_g| V_g}$ Observed velocity can be separated into contributions from different components Dark

Disk Bulge Gas Matter Baryonic contribution can be tuned using Υ_d and Υ_b Even if we assume no information about the Baryonic contribution $V_{DM} \leq V_{obs}$

Must always hold

Ruling out FDM

Power-law relation (*Schive et al., 2014*) between mass of soliton and mass of halo:

$$
\left(\frac{M_{SH}}{10^9 M_{\odot}}\right) = 1.4 \left(\frac{M_h}{10^{12} M_{\odot}}\right)^{1/3} \left(\frac{m}{10^{-22} \text{ eV}}\right)^{-1}
$$

.

• Soliton masses that satisfy the SH relation are not allowed by observed rotation curves.

Self-interactions to the rescue?

SH relation is expected to change in the presence of self-interactions**1,2**

AND satisfy an expected soliton-halo relation?

We can then ask…

For a fixed m , (in this case 10^{-22} eV) Can ULDM with SI fit observed rotation curves m , (in this case 10^{-22} eV

1. L. E. Padilla, et al. *Phys. Rev. D* **103,** no. 6, 063012 (2021) 2. P. H. Chavanis, *Phys. Rev. D* **100,** no. 12, 123506 (2019)

$$
\left(\frac{M_{SH}}{10^9 M_{\odot}}\right) = 1.4 \left(\frac{M_h}{10^{12} M_{\odot}}\right)^{1/3} \left(\frac{m}{10^{-22} \text{ eV}}\right)^{-1} \sqrt{1 + (1.16 \times 10^{-7}) 2 \hat{\lambda} \left(\frac{M_h}{10^{12} M_{\odot}}\right)^{2/3}}
$$

Last value of $s(M_s)$ allowed by the data forms the boundary of the excluded region

UGC01281

Numerical Procedure

 Bihag Dave, **Gaurav Goswami**, "*Self-interactions of ULDM to the rescue?*," J. Cosmol. Astropart. Phys., 07 (**2023**) 015. E-Print: 2304.04463 [astro-ph.CO]

Observable effects of self coupling - II

Tidal effects for satellite galaxy

Host Galaxy

Satellite Galaxy

• A satellite galaxy in a circular orbit around the centre of a larger host DM halo

• Two points in satellite freely falling under the gravity of the host halo

• Acceleration of the relative position vector (\mathbf{r}') of the second point w.r.t first

$$
(\mathbf{r}) - \Phi_{\rm tidal}(\mathbf{r}_0) = -\int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{a}(\mathbf{r}') \cdot d\mathbf{r}'
$$

-
-
- point is **a**(**r**′)
- Tidal potential

 $\Phi_{\rm tidal}($

• In addition to self gravity, tidal disruption effects also important

• For particle like CDM (self gravity and tidal effects), for wave dark matter (self

-
- gravity, quantum pressure and tidal effects)

For **particle-like** Cold Dark Matter (CDM), matter contained within the tidal radius is safe from tidal disruption indefinitely.

For **wave dark matter**, tunnelling can cause the DM within tidal radius to penetrate the potential barrier

Can all satellite galaxies exist over cosmological time scale?

M.P. Hertzberg and A. Loeb, *Quantum tunneling of ultralight dark matter out of satellite galaxies*, *JCAP* **02**

(2023) 059 [arXiv:2212.07386]

Trouble for wave Dark Matter?

Could self interactions help?

B. Dave and **G. Goswami**, "*ULDM self-interactions, tidal effects and tunnelling out of satellite galaxies,*", J. Cosmol. Astropart. Phys., 02 (2024) 044. arXiv:2310.19664 [astro-ph.CO].

 Regular everywhere Spherically symmetric Nodeless Spatially localised Stationary

Could self interactions help?

$$
\gamma \phi = -\frac{\hbar^2}{2m} \nabla_r^2 \phi + \left(m \Phi_{\text{SG}} - \frac{3}{2} m \omega^2 r^2 + \frac{\lambda \hbar^3}{8m^3} \right)
$$

galaxies,", J. Cosmol. Astropart. Phys., 02 (2024) 044. arXiv:2310.19664 [astro-ph.CO]. B. Dave and **G. Goswami**, "*ULDM self-interactions, tidal effects and tunnelling out of satellite*

 $\nabla_r^2 \Phi_{\rm SG} = 4\pi G |\phi|^2$,

 $\frac{\bar{\imath}^{\mathfrak{d}}}{\imath^3 c}|\phi|^2\,\biggr)\,\phi\,,$

Allow the "energy" to be complex

Look for solutions with outgoing wave boundary conditions

The potential barrier shrinks in the presence of repulsive selfinteractions (green), while it stretches when self-interactions are attractive (red)

Can all satellite galaxies exist over cosmological time scale?

Saving wave Dark Matter!

B. Dave and **G. Goswami**, "*ULDM self-interactions, tidal effects and tunnelling out of satellite galaxies,*", J. Cosmol. Astropart. Phys., 02 (2024) 044. arXiv:2310.19664 [astro-ph.CO].

Remarks

- Often, when it is claimed that FDM is ruled out, it is assumed that the self interactions are negligibly small,
	- Where, negligibly small means much smaller than even 10-90
- Even other celebrated constraints e.g. those based on Lyman α can be evaded by self interactions
	- See e.g. 1709.07946, 2301.10266, chapter 3 of this book
- Could other (all?) cases in which FDM is ruled out be saved by self interactions?
	- Work in progress!
- Attractive or repulsive?

OPEN ACCESS

- Benchmark scenario: axions with a cosine potential:
	- Self coupling negative and (if *m* is of the order of 10-22 eV) of magnitude 10-96
- How do I get enhancement of λ (and still get the right relic abundance)?
- Single axion with multiple instantons (note that f could be very close to Planck scale) could give correct relic abundance (misalignment mechanism) and a coupling which is a few order of magnitude larger (in progress).
- Coupling to SM particles, fifth forces, modified gravity etc?

