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II. BASIC FORMALISM

A. Non-relativistic limit of scalar field gravity
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To ensure that we can easily take the non-relativistic
and classical limits, let us briefly stop using natural units.
We wish to deal with the theory with the following action

S =

Z
d4x

p
�g


c4

16⇡G
R+ L

�
, (1)

where,

L = �
1

2
g↵�@↵'@�'� U(') . (2)

Varying the action w.r.t. ' will give equation of motion
of the scalar field in any spacetime,

@µ
⇥p

�g gµ⌫ @⌫'
⇤
=

p
�g U 0(') , (3)

where, U 0(') =
⇣

dU
d'

⌘
. Let us assume that the gravity

is weak i.e. spacetime is essentially flat, save for some
very small fluctuations. This suggests that we describe
spacetime by a weak field metric. If the self-gravity of the
scalar field isn’t too strong such that the gravitational
radius of the soliton is too small compared to the size
of the soliton, the spacetime will be essentially flat and
the use of weak field metric will be completely justified.
At some point, we shall consider the presence of a Black
Hole at the centre of the soliton core. If the Schwarzschild
radius of the BH is very small as compared to the typical
length scales of interest, then, the geometry of spacetime
at su�ciently large length scales can also described by
weak field metric. For static weak field metric (i.e. �
below dependent on only space and not on time and �

c2 ⌧

1), the metric, in Cartesian coordinates, is:

ds2 = �

✓
1 +

2�

c2

◆
(dx0)2 +

✓
1�

2�

c2

◆
�ijdx

idxj , (4)

and we find that, to leading order,
p
�g ⇡ 1 �

2�
c2 , Eq

(3) becomes

@2
0'�r

2'+ U 0(') =
2�

c2
⇥
2@2

0'+ U 0(')
⇤
, (5)

where, @2
0' is @2'

@(ct)2 and in the absence of gravity, the
RHS of the above equation will be zero, giving the famil-
iar equation for a scalar field.

Scalar field dynamics can be adequately described by
non-relativistic equations only if the spatial and tempo-
ral variations of the field are su�ciently slow. In the ab-
sence of gravity and self interactions of the scalar field,

each Fourier mode of the scalar field oscillates with fre-

quency !k =
q

k2c2 + m2c4

~2 = mc2

~ (1 + k
2~2/m2c2)1/2.

Slow variation means that the oscillation frequency is
dominated by !k ⇡ mc2/~, with some small correction
terms. Let us assume that this is true even when the
self-interactions and gravity are present. In that case, in
order to successfully take the non-relativistic limit, we
introduce a complex scalar field  (t, ~x), defined by

'(t, ~x) =
~

p
2m

h
e�i t

tc (t, ~x) + c.c.
i
, (6)

where, tc = ~/mc2 is the “Compton time” associated
with a particle of mass m. Here, the new field  captures
the dynamics of ' in addition to the dominant time evo-
lution captured by e�i t

tc . Slow variation means that (a)
the following hierarchy is maintained

 � tc  ̇ � t2c  ̈� · · · , (7)

and, (b) if we are interested time scales large as compared
to Compton time tc, any terms which are highly oscilla-
tory will average to zero. Note that the above definition,
Eq (6), happens to be such that, for a given �, the field
 is not unique and its phase can still be freely chosen.
At this stage, it is useful to note that, since L in Eq (2)

has dimensions of Energy/L3, the canonical scalar field
' should have dimensions of M1/2L1/2T�1. This tells us
that if the self-interactions are quartic, the expression for
the potential U(') must be

U(') =
⇣mc

~

⌘2 '2

2
+

�'4

4!
. (8)

Using the dimensions of ', we learn that � must have the
same dimensions as those of 1/(~c). This suggests that
the quantity

�0 ⌘ ~c� , (9)

must be dimensionless. In natural units, �0 is the self-
coupling of the scalar field. This is the dimensionless
quantity which we shall attempt to observationally con-
strain.
Now, Eq (5), (6), (7) and (8) imply that in the non-

relativistic limit, for  ,

i~@ 
@t

= �
~2
2m

r
2 + mc2

✓
�

c2

◆
 

+ i~@ 
@t

✓
4�

c2

◆

+
�0~3
8m3c

| |2 �
�0~3
8m3c

✓
2�

c2

◆
| |2 . (10)

Here, the terms in the first line on the RHS are the
usual terms in Schrödinger equation (in the presence of
a gravitational potential �). Given Eq (7), the term
4i~�@ 

@t in the second line on RHS will be very small as
compared to the term m� and hence can be ignored.

 Some observations can probe self couplings of e.g.  

This non-negligible coupling could often be useful 

Could be helpful in uncovering the identity of DM

𝒪(10−90)

λ > 0
  and ,  then, m ∼ 10−22 eV f ∼ 1017 GeV λ ∼ 10−96

The Punchline…



• Wave Dark Matter


• Self Interactions of Ultra Light Dark Matter


• Observable effects of self coupling - I


• Observable effects of self coupling - II


• Conclusions
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The Plan



Wave Dark Matter

4



Dark Matter: particle physics

5

Microscopic origin? 

• Stable / long lived (lifetime cosmological) 

• Electric charge very small (or zero) 

• Mass unknown 

• Spin unknown 

• Non-gravitational interactions / couplings unknown (but constrained)



Ultra Light Dark Matter
Dark Matter particles 

• Stable 

• Zero electric charge 

• Small mass (how small?) 

• Note: non-thermal 

• Zero intrinsic spin (i.e. is scalar or pseudo scalar) 

• Self interactions (inevitable for scalar) 

• Singlet under SM gauge group
6

If DM particle 
mass is too 
small, it can’t be 
fermion



Wave Dark Matter

• Very small particle mass implies very large number density 

• Bosonic quantum fields  Particles and waves in classical limits 

• Gamma ray photons vs radio waves 

• Particle DM vs wave DM 

• Ultra light Bosonic Dark matter can be described by classical field equations

→

7



Cosmology with UL(SF)DM

• Production: e.g. misalignment mechanism 

• Background dynamics same as that of N.R. particles as long as scalar field 
oscillates at the bottom of a quadratic potential 

• Unlike inflation, dark energy 

• Linear perturbations 

• Matter power spectrum: small scale power suppression: classical wave 
can’t be squashed into too small a region 

• Nonlinear scales 8
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a gravitational potential �). Given Eq (7), the term
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m ≳ 10−23 eV

m ≳ 10−28 eV
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Production mechanism

H(t)

mφ

Stuck Oscillates

time

φ

U(φ)

φ

U(φ)

P ≪ ρ
ρ ∼ a−3m ≳ Heq ≈ 10−28 eV



Slowly varying, non-relativistic limit…
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Klein-Gordon-Einstein to Schrodinger-Poisson

3 From Klein-Gordon equation to Schrödinger equation

3.1 Fundamentals

3.1.1 Work with a convenient field

'(t, ~x) =
h̄p
2m

⇣
e

�imc2t
h̄  (t, ~x) + c.c.

⌘
, (14)

Note that this defines  only up to a phase.

3.1.2 Non-relativistic and ultra-relativistic limits for particles

The particle moves slowly i.e. the energy of the particle is dominated by rest mass energy.

|~v| ⌧ c (15)

|~p| ⌧ mc i.e. E ⇡ mc
2 +

|~p|2

2m
+ · · · (16)

kBT ⌧ mc
2 (17)

|~v| ⇡ c (18)

|~p| � mc i.e. E ⇡ |~p|c (19)

kBT � mc
2 (20)

3.1.3 What is the non-relativistic limit of a field?

One possible limit is that we take the c ! 1 limit.
The other approach is to realise that the field changes slowly, what does this mean? I.e. the time dependence

of  (t, ~x) is very slow as compared to e
�imc2t

h̄ . So, if we think of Eq (14) as a cosine, the amplitude of the cosine
is changing very slowly.

This is similar to particle energy being mostly rest mass energy (with p
2
/2m being negligible compared to

mc
2).
See e.g. the solution in the first section on misalignment mechanism of these notes.

The time scale at which e
�imc2t

h̄ changes substantially is tc = h̄/(mc
2), so,  shouldn’t change substantially

over this time scale tc.

Since  (t+ tc) =  (t) + tc ̇(t) +
t2c
2  ̈(t) + · · · , the condition of slow change of  is that

 (t) � tc ̇(t) �
t
2
c

2
 ̈(t) � · · · . (21)

 (t) �  ̇(t)

m
�  ̈(t)

m2
etc (22)

3.1.4 FROM 2202.11081 - Scalar field dark matter: from general relativity to Gross-Pitaevskii-

Poisson equations

In this work, we are interested in the classical field theory with action

S =
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d
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3.1.2 Non-relativistic and ultra-relativistic limits for particles

The particle moves slowly i.e. the energy of the particle is dominated by rest mass energy.

|~v| ⌧ c (15)

|~p| ⌧ mc i.e. E ⇡ mc
2 +

|~p|2

2m
+ · · · (16)

kBT ⌧ mc
2 (17)

|~v| ⇡ c (18)

|~p| � mc i.e. E ⇡ |~p|c (19)

kBT � mc
2 (20)

3.1.3 What is the non-relativistic limit of a field?

One possible limit is that we take the c ! 1 limit.
The other approach is to realise that the field changes slowly, what does this mean? I.e. the time dependence

of  (t, ~x) is very slow as compared to e
�imc2t

h̄ . So, if we think of Eq (14) as a cosine, the amplitude of the cosine
is changing very slowly.

This is similar to particle energy being mostly rest mass energy (with p
2
/2m being negligible compared to

mc
2).
See e.g. the solution in the first section on misalignment mechanism of these notes.

The time scale at which e
�imc2t

h̄ changes substantially is tc = h̄/(mc
2), so,  shouldn’t change substantially

over this time scale tc.

Since  (t+ tc) =  (t) + tc ̇(t) +
t2c
2  ̈(t) + · · · , the condition of slow change of  is that i.e.

 (t+m
�1) =  (t) +  ̇(t)

m +  ̈(t)
2m2 + · · · , the condition of slow change of  is that

 (t) � tc ̇(t) �
t
2
c

2
 ̈(t) � · · · . (21)

 (t) �  ̇(t)

m
�  ̈(t)

m2
etc (22)

3.1.4 FROM 2202.11081 - Scalar field dark matter: from general relativity to Gross-Pitaevskii-

Poisson equations

In this work, we are interested in the classical field theory with action

S =

Z
d
4
x
p
�g

 
M

2
pl

2
R� 1

2
g
↵�

@↵'@�'� U(')

!
, (23)
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2 A quick reminder of basics

2.1 Scalar field dark matter: from general relativity to Gross-Pitaevskii-Poisson
equations

In this work, we are interested in the classical field theory with action

S =
⁄

d4x
Ô

≠g

A
M2

pl

2 R ≠
1
2g–—ˆ–Ïˆ—Ï ≠ U(Ï)

B

, (2.1)

where, U(Ï) = m2Ï2

2
+ ⁄Ï4

4!
. If cosmological DM is to be described by the non-relativistic

dynamics of the scalar field Ï, we wish to observationally constraint the parameters m and
⁄. Varying the above action w.r.t. Ï will give the equation of motion of the scalar field in
any spacetime

ˆµ
#Ô

≠g gµ‹ ˆ‹Ï
$

=
Ô

≠g U Õ(Ï) , (2.2)

where, U Õ(Ï) is the derivative of U . For a regime with weak gravity, the metric takes up
the form

ds2 = ≠ (1 + 2�) (dx0)2 + (1 ≠ 2�) ”ijdxidxj , (2.3)

where, � π 1 and has only spatial variation. Using equation (2.2) and (2.3), one finds that

ˆ2

0Ï ≠ Ò
2Ï + U Õ(Ï) = 2�

Ë
2ˆ2

0Ï + U Õ(Ï)
È

. (2.4)

Similarly, we are interested in the situations in which the scalar field dynamics can be ad-
equately described by non-relativistic equations i.e., the scalar field has slow spatial and
temporal variation. In the absence of gravity and scalar self-interactions, each Fourier mode
of the scalar field oscillates with frequency Êk = m

!
1 + k2/m2

"1/2 and slow variation means
that the oscillation frequency is dominated by Êk = m save for small corrections. This sug-
gests that, in order to successfully take the non-relativistic limit, we introduce a complex
scalar field �(t, x̨), defined by

Ï(t, x̨) = 1
Ô

2m

Ë
e≠imt�(t, x̨) + c.c.

È
, (2.5)

here, the new field � captures the dynamics of Ï over and above the time evolution captured
by e≠imt and slow variation means that (a) the following hierarchy is maintained:

� ∫ m≠1 �̇ ∫ m≠2 �̈ ∫ · · · , (2.6)

and, (b) when we are interested in time scales large as compared to the Compton time m≠1,
any term which is highly oscillatory (e.g. e≠2imt etc) will average out to zero. Note that
equation (2.1) does not define � uniquely and its phase can be freely chosen.

Under this weak gravity and slow variation approximation, equation of motion of the
field � and Einstein equations will yield the Gross-Pitaevskii-Poisson equations, [36, 37]

i
ˆ�
ˆt

= ≠
Ò

2

2m
� + m�� + ⁄

8m3
|�|

2� + · · · (2.7)

Ò
2� = |�|

2

2M2

pl

+ · · · . (2.8)

– 4 –



Self interactions of ULDM?
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• Ultra light scalar fields, mass of O (10-22 eV), could act as DM,  

• Does this scalar couple to other particles? 

• What is the self coupling, λ, of this scalar? 
• It must exist, the question is, is it small enough be ignored? 
• This must be established by observations 
• Even a very small value of self coupling, λ, can have dramatic implications 

Ultra-light scalar field DM self coupling

12



• Benchmark value 
• Misalignment mechanism: correct relic abundance 

• if  and , then  m ∼ 10−22 eV f ∼ 1017 GeV λ ∼ 10−96

Benchmark value of self coupling

13

Ωa ∼ 0.1 ( fa
1017 GeV )

2

( ma

10−22 eV )
1/2

⟹ λa ∼ 10−96



Small self-interactions

chandra.harvard.edu/photo/2006/1e0657/more.html

Bullet cluster constraints on self-interactions

σ/m ≲ 0.5cm2g−1

σ =
λ2

32πs
∼

λ2

32πm2

⟹ λ ≲ 10−44

i ·Ψ = −
1

2m
∇2Ψ+mΦΨ+

λ
8m3

|Ψ |2 Ψ

∇2Φ = 4πG |Ψ |2

ℏ2

2m
1
L2

Ψ ∼ λ
M
L3

Ψ

ρ = |Ψ |2

⟹ λ ∼ 4 ( m
108 M⊙ ) ( kpc

ℏ/mc ) ∼ 10−92

(Mass density)

m = 10−22 eV



• Thus, 
• What is the sign of the self-coupling? I.e. attractive or repulsive? 
• What is the strength of the self-coupling?  

• Recall: quartic self coupling implies contact interactions i.e. in N.R. limit, 
interaction PE is  

• Could eventually help in identifying the scalar field i.e. Dark Matter 

V(ri, rj) = # δ3(ri − rj)

Sign of self coupling

15



Gross-Pitaevskii-Poisson equations
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and, (b) when we are interested in time scales large as compared to the Compton time m≠1,
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ˆt

= ≠
Ò

2
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8m3
|�|
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Ò
2� = |�|

2

2M2
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+ · · · . (2.8)
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Observable effects of self 
coupling - I 
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• Cores of DM halos formed from 
wave DM 

• Solve GPP equations 

• Tunable parameters:  

• Particle mass “m”,  

• Self coupling “ ”,  

• Number of particles 
(parameterised by a scaling 
parameter “s”)

λ

• These parameters 
affect  

• density profile,  

• core mass 

• rotation curve

Parameters and observables



Velocity from density
Simulations suggest a Core-Halo structure:   
ρDM = Θ(rt − r)ρULDM(r) + Θ(r − rt)ρCDM(r)

flat density core

CDM envelope

v(r) =
GM(r)

r
=

4πG ∫ r
0

r′ 2dr′ ρ

r

• Velocity of a test particle in the 
gravitational potential of the halo:

•  is parameterised by ρULDM(r) {m, ̂λini, s}

Self-interactions alter velocity curves as well

Repulsive SI

Attractive SI



Observed rotation curves
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Dark Matter

Gas

Disk

UGC 5721 (from SPARC database)

Vobs = V2
DM + Υd |Vd |Vd + Υb |Vb |Vb + |Vg |Vg

Observed velocity can be separated into 
contributions from different components 

Disk Bulge GasDark 
Matter

Baryonic contribution can be tuned using  and Υd Υb

Even if we assume no information 
about the Baryonic contribution

VDM ≤ Vobs

Must always hold



Ruling out FDM
Power-law relation (Schive et al., 2014)  between mass of soliton and mass of halo:

( MSH

109 M⊙ ) = 1.4 ( Mh

1012 M⊙ )
1/3

( m
10−22 eV)

−1

.

• Soliton masses that satisfy the SH relation are not allowed by observed rotation curves.

N. Bar et al. (2018) 
N. Bar et al. (2022)

What soliton masses 
are allowed?



Self-interactions to the rescue?
SH relation is expected to change in the presence of self-interactions1,2

For a fixed , (in this case )

Can ULDM with SI fit observed rotation curves  

AND 
satisfy an expected soliton-halo relation?

m 10−22 eV
We can then ask…

1. L. E. Padilla, et al. Phys. Rev. D 103, no. 6, 063012 (2021) 
2. P. H. Chavanis, Phys. Rev. D 100, no. 12, 123506 (2019)

( MSH

109 M⊙ ) = 1.4 ( Mh

1012 M⊙ )
1/3

( m
10−22 eV )

−1

1 + (1.16 × 10−7)2 ̂λ ( Mh

1012 M⊙ )
2/3



Fix , (e.g. ) m m = 10−22 eV

Choose a large  (i.e. a small ) such 
that 

s Ms
VDM < Vobs

Decrease  until  and  

 for even one data-
point

s VDM > Vobs
(VDM − VObs)2

σ2
≥ 1

Last value of  ( ) allowed by the data 
forms the boundary of the excluded region

s Ms

Mh = 5.49 × 1010 M⊙

Numerical Procedure



Saving ULDM

 Bihag Dave, Gaurav Goswami, “Self-interactions of ULDM to the rescue?,” J. Cosmol. Astropart. Phys., 07 (2023) 015. E-
Print: 2304.04463 [astro-ph.CO] 
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Observable effects of self 
coupling - II 
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r′ 

Tidal effects for satellite galaxy

Host Galaxy

Satellite Galaxy

• A satellite galaxy in a circular orbit around the centre of a larger host DM halo  

• Two points in satellite freely falling under the gravity of the host halo 

• Acceleration of the relative position vector ( ) of the second point w.r.t first 
point is  

• Tidal potential 

• In addition to self gravity, tidal disruption effects also important 

• For particle like CDM (self gravity and tidal effects), for wave dark matter (self 
gravity, quantum pressure and tidal effects)

r′ 

a(r′ )



For particle-like Cold Dark Matter 
(CDM), matter contained within 
the tidal radius is safe from tidal 
disruption indefinitely. 

For wave dark matter, tunnelling 
can cause the DM within tidal 
radius to penetrate the potential 
barrier

Can all satellite galaxies exist over 
cosmological time scale?

M.P. Hertzberg and A. Loeb, Quantum tunneling of ultralight dark matter out of satellite galaxies, JCAP 02 
(2023) 059 [arXiv:2212.07386] 

Trouble for wave Dark Matter?



Scalar self 
interactions

Self gravitySpreading

Tidal effect

Could self interactions help?

B. Dave and G. Goswami, “ULDM self-interactions, tidal effects and tunnelling out of satellite 
galaxies,”, J. Cosmol. Astropart. Phys., 02 (2024) 044. arXiv:2310.19664 [astro-ph.CO].



29

 Regular everywhere 
 Spherically symmetric
 Nodeless 
 Spatially localised 
 Stationary

Could self interactions help?

B. Dave and G. Goswami, “ULDM self-interactions, tidal effects and tunnelling out of satellite 
galaxies,”, J. Cosmol. Astropart. Phys., 02 (2024) 044. arXiv:2310.19664 [astro-ph.CO].

Allow the “energy” to be complex

Look for solutions with outgoing wave 
boundary conditions

Q
u
a
s
i
 
s
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a
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y
 
s
t
a
t
e
s



The potential barrier shrinks in the 
presence of repulsive self- 
interactions (green), while it 
stretches when self-interactions 
are attractive (red)  

Can all satellite galaxies exist over 
cosmological time scale?

Saving wave Dark Matter!

B. Dave and G. Goswami, “ULDM self-interactions, tidal effects and tunnelling out of satellite 
galaxies,”, J. Cosmol. Astropart. Phys., 02 (2024) 044. arXiv:2310.19664 [astro-ph.CO].



Remarks

• Often, when it is claimed that FDM is ruled out, it is assumed that the self interactions 
are negligibly small,
• Where, negligibly small means much smaller than even 10-90

• Even other celebrated constraints e.g. those based on Lyman  can be evaded by self 
interactions
• See e.g. 1709.07946, 2301.10266, chapter 3 of this book

• Could other (all?) cases in which FDM is ruled out be saved by self interactions?
• Work in progress!

•Attractive or repulsive? 

α

31



Further Remarks

• Benchmark scenario: axions with a cosine potential: 
• Self coupling negative and (if m is of the order of 10-22 eV) of magnitude 10-96

• How do I get enhancement of  (and still get the right relic abundance)?
• Single axion with multiple instantons (note that f could be very close to Planck scale) could give correct 
relic abundance (misalignment mechanism) and a coupling which is a few order of magnitude larger (in 
progress).

• Coupling to SM particles, fifth forces, modified gravity etc?    

λ
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Thank You
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