2HDM-I @ LHC

Tanmoy Mondal

BITS Pilani

based on PRL 131, 231801 (2023), PRD 109 (2024) 3, 033002

October 15, 2024, PPC 2024 @ IITH

<ロト < 回 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Tanmoy Mondal, BITS Pilani, Pilani

Introduction

- No trace of BSM yet.
- \bullet However, DM, EWPT, CP-Violation, ν Oscillation etc.
- Scalar extension: new charged and neutral scalars may exist
- Detecting these new states complements the Higgs precision studies
- The existing LHC searches for 2HDM are motivated by the Yukawa structure of type-II (SUSY)
- These searches can not explore an extensive part of 2HDM phenomenology

Introduction

- No trace of BSM yet.
- \bullet However, DM, EWPT, CP-Violation, ν Oscillation etc.
- Scalar extension: new charged and neutral scalars may exist
- Detecting these new states complements the Higgs precision studies
- The existing LHC searches for 2HDM are motivated by the Yukawa structure of type-II (SUSY)
- These searches can not explore an extensive part of 2HDM phenomenology

I will talk about the following:

- 2HDM-I and scalar spectrum
- Charged Higgs searches at the LHC
- EW multi-Higgs production: A smoking gun for the Type-I 2HDM

The 2HDM

- Physical Scalars: $h(125), H, A, H^{\pm}$
- Four types of Yukawa interaction to avoid FCNC

• I will talk about type-I. Yukawa couplings are modified as follows:

ξ_h^u	ξ_h^d	ξ_h^ℓ	ξ^u_H	ξ^d_H	ξ^ℓ_H	ξ^u_{A,H^\pm}	ξ^d_{A,H^\pm}	ξ^ℓ_{A,H^\pm}
$\frac{c_{lpha}}{s_{eta}}$	$rac{c_lpha}{s_eta}$	$rac{m{c}_lpha}{m{s}_eta}$	$\frac{s_{\alpha}}{s_{\beta}}$	$rac{m{s}_lpha}{m{s}_eta}$	$rac{s_lpha}{s_eta}$	$\cot eta$	$-\coteta$	$-\coteta$

- Fermiophobic *H*: When $s_{\alpha} = 0 \rightarrow \tan \beta = \frac{s_{\beta-\alpha}}{c_{\beta-\alpha}}$
- ${\scriptstyle \bullet }$ Higgs measurement: ${\it s}_{\beta \alpha} \simeq 1$ when ${\it M}_{\it H} > {\it M}_{\it h}$
- Then $\xi^f_H \to 1/\tan\beta$: Fermiophobic H, H^{\pm} & A

・ロト ・ 回 ト ・ 三 ト ・ 三 ト ・ の へ ()・

Indirect Limits on 2HDM-I

The forgotten channels: charged Higgs boson decays to a W^\pm and a non-SM-like Higgs boson

Henning Bahl*1, Tim Stefaniak^{\dagger 1}, and Jonas Wittbrodt^{$\ddagger2$}

< ∃ >

э

DQC

JHEP 06 (2021) 183

Tanmoy Mondal, BITS Pilani, Pilani

Direct Search for BSM scalars in type-I 2HDM

LHC searches for charged Higgs

• Production channel explored:

- 4 Decay channels: [A] $H^{\pm} \rightarrow \tau^{\pm}\nu$, [B] $H^{\pm} \rightarrow t\bar{b}$ [C] $H^{\pm} \rightarrow c\bar{s}$, [D] $H^{\pm} \rightarrow c\bar{b}$
- But in 2HDM-I all these couplings are $\tan \beta$ suppressed.

Experimental Limits

- $m_H \in [130 300] \text{GeV}, \ s_{\beta \alpha} = 0.995, \ \tan \beta \ \in [1, 50] \ \& \ m_{12}^2 \in [0, m_H^2 \ s_\beta \ c_\beta]$
- LHC: H^{\pm} searches via top associated production
- LHC: Neutral Higgs searches: $A \rightarrow Zh(H)$, $A/H \rightarrow \tau\tau$, $H \rightarrow ZZ(\gamma\gamma)$

• Anything above $\tan \beta = 5$ is mostly allowed

 Our work: SS3L via bosonic production and decay as a complementary probe at large tan β.
 Tanmov Mondal. & Praseniit Sanval. JHEP05(2022)040 Tanmoy Mondal, BITS Pilani, Pilani

Scalar spectrum and Decay

- The T-parameter constraint requires H^{\pm} to be almost degenerate with either A or H
- We assumed H^{\pm} and A degenerate while H is lighter
- This allows $H^{\pm} \rightarrow W^{\pm}H$ and $A \rightarrow ZH$ decay

SS3L Signal

• $\tan \beta \quad \textcircled{} \longrightarrow H^{\pm} t \overline{b} \text{ coupling } \blacksquare$

• Drell-Yan production becomes dominant

Signal:

Result

Tanmoy Mondal, BITS Pilani, Pilani

Other End: One light Pseudo-Scalar

What happens if H/A is light?

프 ト イ 프 ト

3

2HDM type-I at the LHC

• Light H has already been studied

- ► Multi-Photon Final state : $PP \rightarrow H^{\pm} H \rightarrow W^{\pm} H H \rightarrow \ell^{\pm} + 4\gamma$
 - A Arhrib, R Benbrik, S Moretti, et.al., JHEP 07 (2018) 007, JHEP 12 (2021) 021
- ► *H* is lighter than 125 GeV Higgs
- We focus on light pseudoscalar case
 - No CPV: No multi- γ final state
 - Dominant decay : $A \rightarrow b\bar{b}$
 - Simultaneous reconstruction of all the BSM scalars.
- BP must pass HiggsBounds, HiggsSignals, $b \rightarrow s\gamma$, STU and other theoretical constraints

Multi pseudoscalar(A) final state via EW production

BP	m _A	$m_{H^{\pm}}$	m _H	t_{eta}	$s_{\beta-lpha}$	m_{12}^2	BR(AA)	BR(AZ)
1	70	169.7	144.7	7.47	0.99	2355	0.99	0.006

Neutral

$$\begin{array}{lll} AAA & : & q\bar{q} \rightarrow H(\rightarrow AA)A \rightarrow 4b + X \ , \\ AAZ & : & q\bar{q} \rightarrow H(\rightarrow AZ)A \rightarrow 4b + X \ , \\ AAWW & : & q\bar{q} \rightarrow H^+(\rightarrow AW)H^-(\rightarrow AW) \rightarrow 4b + X \end{array}$$

Charged

$$\begin{array}{rcl} AAW & : & q\bar{q}' \to H^{\pm}(\to AW)A \to 4b + X \ , \\ AAAW & : & q\bar{q}' \to H^{\pm}(H^{\pm} \to AW)H(\to AA) \to 4b + X \ , \\ AAZW & : & q\bar{q}' \to H^{\pm}(H^{\pm} \to AW)H(\to AZ) \to 4b + X \ . \end{array}$$

Background : QCD multijets. $\sigma \sim 9 \times 10^6 pb$

(日)

Sac

Tanmoy Mondal, BITS Pilani, Pilani

Heavy scalars

Reconstruction of the pseudoscalar A

MG5 ightarrow Pythia8 ightarrow Delphes, $p_T(j)>25$ GeV, $|\eta|<2.5$, R=0.4

• \geq 4 *b*-jets. Possible combinations of b-jet pairs :

(a,b; c,d): (1,2; 3,4), (1,3; 2,4) & (1,4; 2,3)

• Minimization condition: $\Delta R = |(\Delta R_1 - 0.8)| + |(\Delta R_2 - 0.8)|$

$$\begin{split} \Delta R_1 &= \sqrt{(\eta_a - \eta_b)^2 + (\phi_a - \phi_b)^2},\\ \Delta R_2 &= \sqrt{(\eta_c - \eta_d)^2 + (\phi_c - \phi_d)^2}, \end{split}$$

• b-jets coming from a resonance (A) are expected to be close together compared to unrelated jets. **CMS EXO-21-010**: Search for resonant and nonresonant production of pairs of dijet resonances in proton-proton collisions at \sqrt{s} = 13 TeV

• Asymetry cut:
$$\bar{\alpha} = \frac{|m_1 - m_2|}{m_1 + m_2} < 0.2$$

Reconstruction of the Heavy Scalars

H^{\pm}

- Dominant Process : $q\bar{q}' \rightarrow A_1 H^{\pm} \rightarrow A_1 A_2 W^{\pm} \rightarrow 4b + jj$
- Leading *jj* pair: $(m_W 25) < m_{jj} < (m_W + 25)$
- The four *b*-jets were combined into two *b*-jet pairs $(A_{1,2})$ as before.
- $p_T(A_1) > p_T(A_2)$
- Inv mass of $A_2 j j$ system gives H^{\pm} mass

Н

- The dominant signal : $q\bar{q} \rightarrow A_1H \rightarrow A_1A_2A_3 \rightarrow 6b~(6b/5b+j)$
- If multiple *b*-pair satisfy A reco, we maximize $\Delta R(A_1, A_2A_3)$

• $m_{A_2A_3} = m_H$

Reconstruction of the Heavy Scalars

Tanmoy Mondal, Stefano Moretti, Shoaib Munir, & Prasenjit Sanyal, Phys. Rev. Lett. 131, 231801 (2023)

Summary

- 2HDM is well studied at the LHC.
- These studies generally focus on a QCD-induced single/multiple production, followed by a specific decay channel.
- In some 2HDM scenarios (for e.g. type-I), EW production dominates and produce uniques signatures
- A EW production of ϕH^{\pm} leads to 5W production
- A clean signature of such process is SS3L
- If a BSM scalar is light, with EW production, we can reconstruct all the scalars (A, H, H^{\pm})
- We advocate systematic investigations of the EW-induced processes alongside the QCD-initiated ones.

Back Up

ΒP

Baramators	Pre-selection	Reconstructed Higgs		
Farameters	cross section (fb)	σ_S (fb)	σ_B (fb)	S/\sqrt{B}
$m_{H^\pm}=169.7$	AAA: 171.6		A	
$m_{H} = 144.7$	AAZ: 0.76	15.4	8864	8.9σ
$t_{eta} = 7.47$	AAWW: 25.2	H [±]		
$s_{eta-lpha}=0.99$	AAW: 142.3	2.22	482	5.5σ
$m_{12}^2 = 2355$	AAAW: 79.7		Н	
BR(AA) = 0.99	AAZW: 0.35	2.55	309	7.9σ

Low m_A , different $BR(H \rightarrow ZA)$

Parameters	Pre-selection	Reconstructed Higgs		
Farameters	cross section (fb)	σ_S (fb)	σ_B (fb)	S/\sqrt{B}
$m_{H^{\pm}} = 169.8$	AAA: 101.3		A	
$m_{H} = 150.0$	AAZ: 79.3	10.4	10175	5.7σ
$t_eta=17.1$	AAWW: 27.7	H^{\pm}		
$s_{eta-lpha}=0.98$	AAW: 198.0	1.33	491	3.3σ
$m_{12}^2 = 1275$	AAAW: 37.1		Н	
BR(AA) = 0.48	AAZW: 29.0	1.06	256	3.6σ

BG simulation was also a limiting factor

Tanmoy Mondal, Stefano Moretti, Shoaib Munir, & Prasenjit Sanyal, Phys. Rev. Lett. 131, 231801 (2023)

Scalar Trilinear

The scalar trilinear coupling which governs the decay of heavy Higgs to a pair of SM Higgs bosons is

$$\lambda_{Hhh} = -rac{\cos(eta-lpha)}{v\,\sin(2eta)^2}\left[\left(2m_h^2+m_H^2
ight)\sin2lpha\sin2eta\sin2eta-\left(2\sin2lpha-\sin2eta
ight)m_{12}^2
ight]$$

Branching comparison

$\mathsf{CMS} \ \mathsf{plots}$

CMS PAS HIG-18-004

 $\langle \Xi \rangle$

= 900

JHEP11(2015) 018,[1508.07774]

JHEP 07 (2019) 142,[1903.04560]

Tanmoy Mondal, BITS Pilani, Pilani

Light H vs light A

Hhh

$$egin{array}{rcl} \lambda_{Hhh}&=&rac{1}{2 extsf{v} c_eta s_eta}ig\{(3M^2-2m_h^2-m_H^2)s_{2lpha}-M^2s_{2eta}ig\}\ & o & 0, \qquad ext{for sin}(eta-lpha) o 1 \end{array}$$

ΗΑΑ

hAA

$$\lambda_{hAA} = \frac{1}{4vc_{\beta}s_{\beta}} \left\{ (4M^2 - 2m_A^2 - 3m_H^2)c_{\alpha+\beta} + (2m_A^2 - m_h^2)s_{\alpha-3\beta} \right\}$$

$$\rightarrow \frac{1}{4(2M^2 - 2m_A^2 - m_h^2)}_{\text{Tammey Mondal, BITS Pilani, Pilani}} \text{ for } \sin(\beta - \alpha) \rightarrow 1$$

Analysis

• Three same-sign isolated leptons is a clean channel and can be crucial

Signal cross-sections at $\sqrt{s}=13$ TeV				
Paramete	σ [fb]			
$\Delta m = 60 \text{ GeV}$	Signal 1	0.0007		
$\Delta m = 00 \text{ GeV}$	Signal 2	0.0000406		
$\Delta m = \frac{95}{100} CoV$	Signal 1	0.0131		
$\Delta m = 65 \text{ GeV}$	Signal 2	0.00276		
$\Delta m = 120 \text{ GeV}$	Signal 1	0.0260		
$\Delta m = 120 \text{ GeV}$	Signal 2	0.0113		

Background cross-sections at $\sqrt{s}=13$ TeV					
Backgrounds	Production σ [fb]	Selection σ [fb]			
WZ+jets	1360.80	0.0061			
$Z\ell^+\ell^-+$ jets	246.55	0.00061			
ZZW+jets	0.781	0.00155			
h(ightarrow ZZ)W+jets	0.218	0.00041			
$h(ightarrow WW)tar{t}+$ jets	20.51	0.000123			
$t\overline{t}W$ +jets	62.57	0.0018			
$t\overline{t}Z$ +jets	92.08	0.00092			

2HDM : Gauge interactions

• Gauge-Higgs sector :

$$g_{hVV} = s_{eta - lpha} \,\, g_{hVV}^{
m SM}, \ \ g_{HVV} = c_{eta - lpha} \,\, g_{hVV}^{
m SM}, \ \ g_{AVV} = 0,$$

• Other relevant vertices

$$\begin{array}{ll} (A) \ hAZ_{\mu} : \ \frac{g_{2}}{2c_{W}}c_{\beta-\alpha}(p+p')_{\mu}, & HAZ_{\mu} : \ -\frac{g_{2}}{2c_{W}}s_{\beta-\alpha}(p+p')_{\mu}, \\ (B) \ hH^{\pm}W_{\mu}^{\mp} : \ \mp i\frac{g_{2}}{2}c_{\beta-\alpha}(p+p')_{\mu}, & HH^{\pm}W_{\mu}^{\mp} : \ \pm i\frac{g_{2}}{2}s_{\beta-\alpha}(p+p')_{\mu}, \\ (C) \ H^{\pm}AW_{\mu}^{\mp} : \ \frac{g}{2}(p+p')_{\mu} \end{array}$$

H Mostly decays to WW

A (degenerate with H^{\pm}) decays to HZ

Signal is not very large

• Also SM Background is very small due to lack of b-jet in the signal

Result for
$$s_{\beta-\alpha} = 0.999$$

Tanmoy Mondal, & Prasenjit Sanyal, JHEP05(2022)040