Search for dark matter in Higgs decays to two Taus + P_T^{miss} channel using full Run-2 data

BISNUPRIYA SAHU

University of Hyderabad, India On behalf of the CMS collaborations

October 15th 2024

17th International Conference on Interconnections between Particle Physics and Cosmology

PPC 2024

14 -18 October 2024, Hyderabad, India

प्रतिष्ठित संस्थान INSTITUTION OF EMINENCE राष्ट्रीय अपेक्षाएँ, वैश्विक मानक National Needs, Global Standards हैदराबाद विश्वविद्यालय UNIVERSITY OF HYDERABAD

Introduction:

Dark Matter:

Electrically Neutral Interact only through gravity Weakly Interacting Massive Particles (WIMPs)

How to Detect Dark matter?

Dark nergy

Colliders: Collision of SM particles (p-p at LHC) DM may produce, appear as **Missing Transverse Momentum**

Hot gas in clusters of galaxies

bisnupriya.sahu@cern.ch PPC 2024, 14-18 OCTOBER , INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

ERN CMS

🥺 University of Hyderabad 🕮

>

Why Mono-Higgs Search?

Canonical mono-jet/photon/W/Z from initial state radiation (ISR)

Mono-Higgs (Mono-h) -"h" produced in ISR is highly suppressed

-The FSR of DM particles or the Beyond SM (BSM) interaction of DM particles with "h", typically via a mediator particle

Signature:

-Reconstruct Higgs and search for excess of events with high $p_{\rm T}^{\rm miss}$

Analysis:

- Signature of mono-Higgs: Higgs $(\tau + \tau)$ + missing transverse momentum (p_T^{miss})
- Benchmark models:
 - 2HDM+a

Baryonic Z'

bisnupriya.sahu@cern.ch PPC 2024, 14-18 OCTOBER , INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

SM Backgrounds:

- $\Box \quad Z \to \ell \ell \Rightarrow \text{Two real taus coming from } Z \text{ boson, major background } (\ell \text{-} lepton)$
- Jet misidentified as taus:
 QCD, W+jets and ttbar contribution
- $\Box \quad TTbar : TT \Rightarrow 2\ell + 2\nu \text{ (v-neutrino)}$
- □ Diboson: □ WW $\Rightarrow 2\ell + 2\nu$ □ ZZ $\Rightarrow 2\ell + 2\nu$

□ SM Higgs

Event Selection:

Analysis is divided into 3 channels depending on decay mode of leading τ

Common selections in all the three channels

✓ Opposite charge

- $\checkmark \Delta R > 0.5$
- ✓ Higgs $p_T > 65 \text{ GeV}$
- ✓ Visible mass of the system < 125 GeV

✓ MET > 105 GeV

 \checkmark M_T^{Tot} > 100 GeV

bisnupriya.sahu@cern.ch

PPC 2024, 14-18 OCTOBER , INDIAN INSTITUTE OF TECHNOLOG Y HYDERABAD

Background Estimation: Jet to tau fake background

- ★ Jet $\rightarrow \tau$ events estimated with data-driven fake factor (FF) method
- ✤ Wjets CR definition is modified to be orthogonal to our SR
 - Higgs PT < 65 GeV
- Jet $\rightarrow \tau$ background include events from the following processes:
 - ♦ QCD multijet (large majority of jet $\rightarrow \tau$ fake events in the $\tau_h \tau_h$ final state).
 - W+jets (mostly in the $e\tau_h$ and $\mu \tau_h$ final states).
 - tt events with fully-hadronic or semi-leptonic decays.
- To estimate the fake background in signal region, anti-isolated tau region is selected, and events are weighted with fake factors.
- * Anti-isolated τ : pass Loose isolation and fail nominal isolation criteria

Signal Extraction Strategy:

- ✓ Select et, $\mu\tau$, $\tau\tau$ pairs with opposite sign, third lepton-veto, bjet veto ✓ $\Delta R > 0.5$
- ✓ Higgs $p_T > 65 \text{ GeV}$
- ✓ Visible mass of the system < 125 GeV
- ✓ MET > 105 GeV
- ✓ $M_T^{Tot} > 100 \text{ GeV}$

Signal is extracted based on the likelihood fit on the total transverse mass variable in the signal region

$$M_{\rm T}^{\rm tot} = \sqrt{(E_{\rm T}^{\tau_1} + E_{\rm T}^{\tau_2} + p_{\rm T}^{\rm miss})^2 - (p_x^{\tau_1} + p_x^{\tau_2} + p_x^{\rm miss})^2 - (p_y^{\tau_1} + p_y^{\tau_2} + p_y^{\rm miss})^2}$$

bisnupriya.sahu@cern.ch PPC 2024, 14-18 OCTOBER , INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

Total transverse Mass:

bisnupriya.sahu@cern.ch

PPC 2024, 14-18 OCTOBER , INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

9

CMS-PAS-SUS-23-012

2HDM+a Model Limits 1d scans: combined 2017 and 2018

bisnupriya.sahu@cern.ch

PPC 2024, 14-18 OCTOBER , INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

2HDM+a Model Limits 2d scans: combined 2017 and 2018

Varying $m_A vs m_a$ For the $m_a \sim 100$ GeV, the observed (expected) exclusion region for $m_A \sim 400-700$ (400-800) GeV

<u>CMS-PAS-SUS-23-012</u>

ern.ch PPC 2024, 14-18 OCTOBER , INDIAN INSTITUTE OF TECHNOLOG V H VDERABAD

Baryonic-Z' Model Limits: Full Run 2

Summary

- •Search for dark matter produced in association with a Higgs boson decaying to taus is presented using full Run-2 data
- •Results are interpreted using 2HDM+a and Z' Baryonic models
- •No significant deviation is observed from the SM predictions
- •Upper limits are set on the model parameters at 95% CL
- •The exclusion regions are shown for both models
 - For 2HDM+a
 - First time interpretation for this model using 2017+2018 data
 - For ma ~ 100 GeV, the observed (expected) exclusion for the mA ~ 400-700 (400-800) GeV for ma ~100 GeV
 - Z' Baryonic model
 - Full Run-2 combination is presented
 - For $m_{\chi}=1$ GeV, the observed (expected) exclusion for the Z' mass is 1050 (1150) GeV

Thank you for your attention...

(WE)

Backup

Background estimation: Jet to taus fake background

- •Step: 1. Fake rate are determined as ratio of isolated to non-isolated τ_h candidates, measured as a function of the $\tau_h p_T$, separately for QCD, W+jets, and *tt*bar CRs
- •Step: 2. A visible mass corrections derived by comparing the distributions of isolated events in the control region with anti-isolated events in the control region reweighted with the raw fake rates of step 1.
- •Step: 3. Additional corrections derived for the selection criteria that differ between the signal region and the control regions
- •Step: 4. Computation of the relative fraction of QCD, W+jets, and tt bar events for a given category (depending on number of jets) and $\tau_h p_T$ to compute a fake rate as a weighted average of the individual fake rates. $FF(\text{category}) = fracW \times FFW + fracQCD \times FFQCD + fractt \times FFt$

•Step: 5. Events that pass the signal region selection except that the τ_h candidate fails the isolation are reweighted with the global fake rate of step 4.

Wjets CR

Sources of Systematics:

Uncertainty	Magnitude	Correlation years	Correlation final states
$\tau_{\rm h}$ identification	p_{T}	0%	100 (0)% for $\ell \tau_{\rm h} (\tau_{\rm h} \tau_{\rm h})$
$ au_{ m h}$ ID, for high $p_{ m T}^{ au_{ m h}}$	Event-dependent	100%	100%
$ au_{\rm h}$ energy scale	0.7–1.2%	0%	100%
Electron misidentified as $\tau_{\rm h}$	Event-dependent	0%	0%
Muon misidentified as $\tau_{\rm h}$	Event-dependent	0%	0%
Electron/muon identification	2%	0%	0%
Energy scale for lepton misidentified as $\tau_{\rm h}$	1%	0%	0%
Trigger	Event-dependent	no	no
Electron energy scale	Event-dependent	100%	100%
Muon energy scale	0.4–2.7%	100%	100%
b jet veto	Event-dependent	partial	100%
Luminosity	2–3%	partial	100%
$t\bar{t}$ cross section	4.2%	100%	100%
Diboson cross section	5%	100%	100%
Single top quark cross section	5%	100%	100%
Drell-Yan cross section	2%	100%	100%
L1 prefiring	Event-dependent	0%	100%
Z boson $p_{\rm T}$ reweighting	Event-dependent	100%	100%
Top quark $p_{\rm T}$ reweighting	Event-dependent	100%	100%
Jet energy scale	Event-dependent	100%	100%
Jet energy resolution	Event-dependent	100%	100%
$p_{\rm T}^{\rm miss}$ unclustered ES	Event-dependent	no	100%
$p_{\rm T}^{\rm miss}$ recoil corrections	Event-dependent	no	100%
FF in $\ell \tau_{\rm h}$	Event-dependent	partial	0%
FF in $\tau_{\rm h} \tau_{\rm h}$	Event-dependent	partial	0%
FF in $ au_{ m h} au_{ m h}$, for $p_{ m T}^{ au_{ m h}} > 100{ m GeV}$	Event-dependent	0%	0%

Event selection: (2017+2018)

Final state	Observable	First lepton	Second lepton
$e\tau_{\rm h}$	$p_{\rm T} >$	25	30
	$ \eta <$	2.1	2.3
	$I_{\rm rel}^{\rm e} <$	0.15	—
$\mu au_{ m h}$	$p_{\rm T}^{\rm rel}$ >	29	30
	$ \eta <$	2.4	2.3
	$I^{\mu}_{\rm rel} <$	0.15	—
$ au_{ m h} au_{ m h}$	$p_{\rm T}^{\rm rel}$ >	55	45
	$ \eta <$	2.1	2.1

bisnupriya.sahu@cern.ch PPC 2024, 14-18 OCTOBER , INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

CERN CMS

Mono- Higgs searches: 2. $h \rightarrow$ tautau (2016)

		Lepton selection		
Final state	Trigger type	$p_{\rm T} [{\rm GeV}]$	η	Isolation
$ m e au_h$	m e(25GeV)	$p_{\rm T}^{\rm e} > 26$	$ \eta^{\rm e} < 2.1$	$I_{ m rel}^{ m e} < 0.1$
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 20$	$\left \eta^{\tau_{\rm h}}\right < 2.3$	Tight MVA $\tau_{\rm h}$
$\mu au_{ m h}$	$\mu(24{ m GeV})$	$p_{\mathrm{T}}^{\mu} > 26$	$ \eta^{\mu} < 2.4$	$I^{\mu}_{ m rel} < 0.15$
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 20$	$\left \eta^{\tau_{\rm h}}\right < 2.3$	Tight MVA $\tau_{\rm h}$
$ au_{ m h} au_{ m h}$	$\tau_{\rm h}~(35{\rm GeV})$ & $\tau_{\rm h}~(35{\rm GeV})$	$p_{\rm T}^{\tau_{\rm h}} > 55\&40$	$\left \eta^{\tau_{\rm h}}\right < 2.1$	Loose MVA $\tau_{\rm h}$

Table 2. Selection requirements for the three $\tau \tau$ decay channels. The $p_{\rm T}$ thresholds for the triggers are given in the second column in parentheses.

Total trmass plots: (2016)

bisnupriya.sahu@cern.ch

PPC 2024, 14-18 OCTOBER , INDIAN INSTITUTE OF TECHNOLOG Y HYDERABAD

