Real time Auto Encoder based Anomaly Detection Algorithm to Search for New Physics

CIC ADA

Varun Sharma

University of Wisconsin – Madison, USA

Particle Phyiscs and Cosmology (PPC 2024) 14 – 18th October 2024, Hyderabad, India

Searches in all direction & topologies New Ideas New strategies SUSY Dark Matter **Unsolved** Unexplained theoretical phenomena problems LLPS, VLQS, LQS... Massive Neutrinos

CMS Data Processing/Readout

No BSM discovery at the LHC (yet!)

- ? New physics not possible at the current LHC scale
- ? Not enough data
- ? Maybe we are not looking in correct direction

Need to make fast decision or physics suffers!

Xilinx's Virtex7 based CMS L1 Calorimeter Trigger

Machine Learning at Level-1 Trigger

Traditional event selection at L1 based on object thresholds

 High-level and Data analysis selections limited to use those objects

- ML decisions based on level-1 inputs themselves
- Minimize human bias, completely data-driven
- ML can unearth unknown and complex correlation
- New physics searches in model-independent way

Calorimeter Image Convolutional Anomaly Detection Algorithm

https://cicada.web.cern.ch/ CMS-DP-2023-086

CMS Level-1 Trigger

Calorimeter Trigger

Muon Trigger

CIC A: New Addition in Run-3

CICADA - PPC 2024 - Varun Sharma

October 15, 2024

CICADA Inputs from CALO Layer-1

CIC A DA: Inputs

- $18 \phi \times 14 \eta$ regions, 252 regions in total
- Each region contains energy • deposits from both ECAL and HCAL
- Summary of the energy distribution • profile within the region
- Low level information not dependent on object reconstructions

Calorimeter E_T deposit from One ZeroBias event

CaloL1 Setup

- Calo-Layer 1 Trigger consists of 3-μTCA crates each equipped with 6-CTP7 cards
- Each CTP7 cards receive information from the calorimeters (HCAL, ECAL, HF) and send calibrated E+H & E/H to next lyare

CMS L1-Trigger Workshop --- Varun Sharma

CIC ADA: Layer-1 to uGT

CICADA to uGT Fiber Path (Block Diagram Simplified)

All data is collected in one card '<u>Summary Card</u>' LC fibres

Global Trigger

September 11 - 15, 2023

11

CIC Auto-encoder Model

Model architecture: calo input \rightarrow encoder \rightarrow latent space \rightarrow decoder \rightarrow reconstructed input

Autoencoder-based **anomaly** detection

- Input is a 2D tensor from the Calo region energy information
- Encoder and decoder are Convolutional Neural Networks
- **Unsupervised** learning : train only on ZeroBias data to learn input reconstruction

CIC A: Event Reconstruction

Expectation:

- Good reconstruction on normal events (ZeroBias used for training)
- Bad reconstruction on anything else such as BSM signals (never seen during training)
 Goal:
- Anomaly Score: Mean Squared Error, MSE(input, output)

Quantization-aware training (QKeras)

- Model weights quantized to fixed precision (e.g., 2 bits for integer, 4 bits for fraction)
- Train a quantized model rather than quantize a trained model
 CICADA PPC 2024 Varun Sharma
 Octo

 \rightarrow x10 reduction in resources/latency

October 15, 2024

Param #

input (InputLayer)	[(None, 18, 14, 1)]	0
<pre>conv2d_1 (Conv2D)</pre>	(None, 18, 14, 20)	200
relu_1 (Activation)	(None, 18, 14, 20)	0
<pre>pool_1 (AveragePooling2D)</pre>	(None, 9, 7, 20)	0
conv2d_2 (Conv2D)	(None, 9, 7, 30)	5430
relu_2 (Activation)	(None, 9, 7, 30)	0
flatten (Flatten)	(None, 1890)	0
latent (Dense)	(None, 80)	151280
dense (Dense)	(None, 1890)	153090
reshape2 (Reshape)	(None, 9, 7, 30)	0
relu_3 (Activation)	(None, 9, 7, 30)	0
conv2d_3 (Conv2D)	(None, 9, 7, 30)	8130
relu_4 (Activation)	(None, 9, 7, 30)	0
upsampling (UpSampling2D)	(None, 18, 14, 30)	0
conv2d_4 (Conv2D)	(None, 18, 14, 20)	5420
relu_5 (Activation)	(None, 18, 14, 20)	0
output (Conv2D)	(None, 18, 14, 1)	181

Output Shape

Student

Output Shape	Param #
[(None, 252)]	0
(None, 15)	3780
(None, 15)	60
(None, 15)	0
(None, 1)	15
	Output Shape [(None, 252)] (None, 15) (None, 15) (None, 15) (None, 1)

Trainable params: 3,825 Non-trainable params: 30

324K parameters go down to 3.8K parameters

Laver (type)

Trainable params: 323,731

Non-trainable params: 0

CIC A: Physics Performance

- Model trained on 2023 ZB, evaluated on 2023 Simulated signals
- Able to pick up a wide range of BSM signals

CIC A: Rate Stability

A Flexible trigger: tunable threshold for different rates, stable over the run

HL-LHC: Can be more adventurous

Wisconsin APxF Board

- Xilinx VU13P FPGA
- 25G Samtec Firefly optics (124 25 Gbps links)

CMS Upgrade to Level-1 Trigger

More resources available to implement ML based triggers

CICADA - PPC 2024 - Varun Sharma

October 15, 2024

CIC A: Summary

✓ CICADA: Calorimeter Image Convolutional Anomaly Detection Algorithm

- New addition to CMS Level-1 Trigger system for Run-3
- Unsupervised, Auto-encoder based, tunable algorithm for a model independent search for new physics as close to the "raw data stream" as possible
- Taking Physics Data: 2024 2026* (Rate ~100Hz)

 Potential to catch more signals that are otherwise rejected by the current triggers

✓ HL-LHC: CMS Upgrade of Level-1 trigger

- Bigger/Faster FPGAs to provide more resources
- More complex ML based algorithms being developed

Machine Learning is Everywhere

NOBELPRISET I FYSIK 2024 THE NOBEL PRIZE IN PHYSICS 2024

Applications

John J. Hopfield

Geoffrey E. Hinton

"for foundational discoveries and inventions that enable machine learning with artificial neural networks"

THE ROYAL SWEDISH ACADEMY OF SCIENCES

What is CICADA ©

A **"CICADA"** is an insect of the family "Cicadoidea"

- Cicadas are known for their loud vocalizations (typically during summer)
- Much of a cicada's life cycle is actually spent underground, with a few famous American species (the "periodical cicada") only emerging every 13 (magicicada tredecim) or 17 (magicicada septendecim) years

Source: https://kids.nationalgeographic.com/animals/invertebrates/facts/cicada

ధన్యవాదాలు

Thank you

CICADA - PPC 2024 - Varun Sharma

October 15, 2024