

Rare b →sll decays at 13 TeV by CMS Detector

17th International Conference on Interconnections between Particle Physics and Cosmology 14 -18 October 2024, Hyderabad, India

Samarendra Nayak

Indian institute of Technology Bhubaneswar

Outline

- Why look for rare B decays?
- Test of lepton flavor universality in $B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}$ and $B^{\pm} \rightarrow K^{\pm}e^{+}e^{-}$ decays at 13 TeV
- Measurement of the $B^{0}_{s} \rightarrow J/\psi K^{0}_{s}$ effective lifetime at 13 TeV
- Angular analysis of $B^0_{\ s} \rightarrow \ \varphi \mu^+ \mu$ at 13 TeV
- Conclusion

Why look for rare decays of B mesons ?

- b \rightarrow s,d quark transitions are Flavor Changing Neutral Currents (FCNCs), suppressed at tree level.
- In the Standard Model(SM) they only can occur through loops (penguin and box diagrams).
- Reveal the potential cracks in the SM, hinting at the existence of new physics (NP).
- Small SM branching fraction.

Observables/properties sensitive to new physics :

- Branching fractions
- Lepton flavor universality
- Lepton forward-backward asymmetry (A_{FR}) , CP asymmetry (A_{6}) and much more!!

Test of lepton flavor universality in $B^{\star} \to K^{\star} \mu^{\star} \mu^{-}$ and $B^{\star} \to K^{\star} e^{\star} e^{-}$ decays

 $\mathfrak{B}(B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-})$

- In SM the charged leptons (e^{\pm} , μ^{\pm} , τ^{\pm}) exhibit a similar behavior, commonly known as lepton flavor universality (LFU).
- Branching fractions of different lepton species could be modified differently by NP, thus resulting in LFUV.
- $B^{\pm} \rightarrow K^{\pm} l^{+}l^{-}$ decays provide an excellent environment to test LFU.
- The yield of B^\pm \rightarrow $K^\pm\mu^+\mu^-$ is 1267±55 in low q^2 region $(1.1 \ < \ q^2 \ < \ 6.0 \ GeV^2/c^4) \ using \ 2018 \ dataset.$
- The measured $\mathscr{B}(B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}) = (12.42\pm0.68)\times10^{-8}$ in low q^{2} bin and consistent with the present world average.

arXiv:2401.07090

Measurement of R(K)

• R(K) is measured in the low q^2 region of both the $B^+ \rightarrow K^+ \mu^+ \mu^-$ and $B^+ \rightarrow K^+ e^+ e^-$ channels, where

$$R(K) = \frac{B^+ \longrightarrow K^+ \mu^+ \mu^-}{B^+ \longrightarrow J/\psi(\mu^+ \mu^-)K^+} / \frac{B^+ \longrightarrow K^+ e^+ e^-}{B^+ \longrightarrow J/\psi(e^+ e^-)K^+}$$

- The control modes $B^{\pm} \rightarrow J/\psi K^{\pm}$ with $J/\psi \rightarrow \mu\mu$ and $J/\psi \rightarrow ee$ help in significant cancellation of systematic uncertainties.
- The measured $R(K) = 0.78^{+0.46}_{-0.23} \text{ (stat)}^{+0.09}_{-0.05} \text{ (syst)}$, which is in agreement with the standard model expectation $R(K) \approx 1$.

Measurement of the $B^0_{\ s} \rightarrow J/\psi K^0_{\ s}$ effective lifetime

- $B^{0} B^{0}_{s}$ oscillations provide a valuable tool in the study of CP violation.
- Phase φ_d arises from $B^0 B^0_s$ oscillations, is important in measuring CP violation.
- Φ_d can be determined well by studying the penguin contribution, which is $B_0^{s} \rightarrow J/\psi K_s^0$.
- Effective lifetime is determined by performing a 2D unbinned maximum likelihood fit to the B_0^{s} invariant mass and proper decay time distributions.
- Resulting effective lifetime is 1.59±0.07(stat)±0.03(syst)
 ps, which is the most precise measurement to date and agrees with SM.

<u>arXiv:2407.13441</u>

6

Decay time t [ps]

Angular Analysis of $B^0_{\ s} \rightarrow \phi \mu^+ \mu$ at 13 TeV by CMS

- $B^{0}_{s} \Rightarrow \varphi \mu^{+} \mu$ is a FCNC process forbidden in SM at tree level.
- They proceed via electroweak penguin and box diagrams.
- Undiscovered particles may enter these diagrams and alter the decay amplitude.
- The analysis is based 137.5 fb⁻¹ of integrated luminosity at com of \sqrt{s} = 13 TeV.
- Aim to extract the set of angular parameters (CP averaged and CP asymmetries) for this decay as a function of the dimuon invariant mass squared (q^2) .

Illustration of the decay showing the angles $\theta_{\rm k}$, $\theta_{\rm l}$ and ϕ :

The angular differential decay rate for $B_s \rightarrow \phi \mu^+ \mu^-$ is a function of q^2 , $\cos \theta_{\kappa}$, $\cos \theta_{\iota}$, (Integrating out angle ϕ)

$$\frac{1}{d\Gamma/dq^2} \frac{d^2\Gamma}{d\cos\theta_k d\cos\theta_l} = \frac{9}{16} \left(\frac{1}{2} (1 - F_L) \cdot (1 - \cos^2\theta_K) \cdot (1 + \cos^2\theta_l) + 2F_L \cdot \cos^2\theta_K \cdot (1 - \cos^2\theta_l) + A_6 \cdot (1 - \cos^2\theta_K) \cdot \cos\theta_l \right)$$

arXiv:2107.13428

The angular observables **F_L is CP** averaged, and **A₆ is CP asymmetry**.

Previous Results

- CDF observed $B^0_{s} \rightarrow \varphi \mu^+ \mu$ in 2011 [<u>PRL.106.161801</u>]
- Angular analysis and differential branching fraction measurement performed by LHCb using 3fb⁻¹ data in 2015 [<u>JHEP09(2015)179</u>]
- Branching fraction measurement by LHCb at 7,8 and 13 TeV using 1, 2 and 6 fb⁻¹ respectively is 2021 [PRL.127.151801]
- Angular analysis performed by LHCb at 7,8 and 13 TeV using 3, 1.7 and 3.7 fb⁻¹ respectively in 2021 [<u>JHEP11(2021)043</u>]

Signal Candidates Selections

- Events are selected by set of trigger paths, include two μ^\pm with p_τ > 4 GeV and $|\eta|$ < 2.5
- φ mesons are reconstructed in the K^+K^- final state using two oppositely charged high-purity tracks.
- Each φ candidate is combined with μ^{\pm} in a fit to a common vertex to form a $B^s_{\ 0}$ candidate.

Other Background Suppression:

- Combinatorial background : Suppressed by "BDT" algorithm
- Resonance mode (J/Ψφ,Ψ'φ) : Suppressed by cuts [8-11] GeV/c² & [12.5-15] GeV/c² and anti-radiation veto
- $\phi(1020)$ resonance : Potential contamination is removed by a cut 1.01 GeV/c² < m(K^+K^-) < 1.03 GeV/c²
- **Peaking bkg** : Yield is constrained in the final fit
- Data with $q^2 \in [1.0, 18.9]$ GeV/c² are analysed in order to extract the signal parameters of interest (A₆, F_L)

Analysis Validations

- Selection and reconstruction can distort the angular and q^2 distributions observed in data.
- Effects are described by an angular efficiency $\varepsilon(\cos\theta_{\kappa}, \cos\theta_{1})$,
 - □ Detector acceptance efficiency
 - □ Efficiency for reconstructing and selecting the signal candidates
- The efficiency modelling and the fitting procedures are validated with the following validations:
 - Closure test
 - High-statistics pure signal MC
 - \circ $\,$ Signal MC toys $\,$
 - Cocktail MC (data-like) toys
 - Control Channels $(B_s \rightarrow J/\Psi \phi, \Psi' \phi)$

Summary of $B^0_{s} \rightarrow \phi \mu^+ \mu^-$ Angular Analysis by CMS

- Angular analysis is performed for the rare decay $B_s \rightarrow \phi \mu^+ \mu^-$ on full Run 2 data at 137.5 fb⁻¹ in different signal q² bins.
- Fits are performed on data with blinding the parameters of interests (POIs) (<u>RooUnblindPrecision</u> Class).
- All fits look reasonably good, and no abnormal distributions are found in data.
- Simulation studies with Run 2 sample is ongoing.

Conclusion

- Recents results on B decays at CMS at \sqrt{s} = 13 TeV are discussed.
- R(K) measured in the range 1.1 < q^2 < 6.0 GeV² is found to be in agreement with SM.
- Measured effective lifetime of $B_s^0 \rightarrow J/\psi K_s^0$ is the most precise result to date and can be used to constrain the parameters that govern mixing and *CP* violation in the B_s^0 system.
- Angular analysis of $B^0_s \rightarrow \phi \mu^+ \mu$ is studied as a function of q^2 at the integrated luminosity of 137.5 fb⁻¹ of data with blinded POIs, at $\sqrt{s} = 13$ TeV.

Thank you for your attention!

_ _ _

Simultaneous $3D(mB_s, cos\theta_k, cos\theta)$ fits on data using blinding strategy

- **<u>RooUnblindPrecision</u>** object is used for blinding the POIs (A_6, F_1) .
- The uncertainty in the blind parameter is identical to that of the unblind parameter.

<u>Signal PDF :</u>

 $m(K\pi\mu\mu)$:Double Crystal Ball distributions (DCB) with single mean

```
Angular Shape(cos\theta_{\kappa}, cos\theta_{L}) : Polynomials
```

```
<u>Combinatorial Background PDF :</u>
```

m(KKμμ) : Exponential function

Angular Shape $(\cos\theta_{\kappa}, \cos\theta_{L})$: Polynomials

Peaking Background PDF :

m(KKμμ) : DCB with single mean

Angular Shape ($\cos\theta_{\kappa}$, $\cos\theta_{L}$) : Polynomials and Gaussians

Angular Observables from Toy MC

The observables A_6 , F_L from **Toy MC** show good agreement with the SM predictions and LHCb Run1 + Run2 results within the errors of the measurement.