

AUGER

OBSERVATORY

The Pierre Auger Observatory: Results and Prospects

uni-siegen.de

The Pierre Auger Observatory

- Area: 3000 km²
- Altitude: 1400 m a.s.l.
- Collaboration: 18 countries, 95 institutes
 → over 400 members

Pierre Auger Observatory Province Mendoza, Argentina

The Pierre Auger Observatory

- Surface Detectors (SD):
 - 1,600 water-Cherenkov detectors
 - 1.5 km grid spacing
- Fluorescence Detectors (FD):
 - 4 buildings, each 6 telescopes
 - around the observatory perimeter
- Infill array (enhancement area):

October 16, 2024

- 60 SD: 750 m grid spacing
- Underground muon detectors (UMD): 30 m² scintillators
- High elevation telescopes (HEAT)
- Auger engineering radio array (AERA)

Hybrid Detection Technique

Calibration of SD with FD:

FD provides a quasi-calorimetric •

energy measurement

- Improves geometry reconstruction for hybrid events
- Enhances control of systematic uncertainties

What are we after?

UHCR Energy Spectrum

- 14 years of data with over 200,000 events
- Deviations from a power law:

distinct features observed

• UHE features incompatible with

single mass models

• Suppression due to propagation effects

and/or source exhaustion

Mass Composition

- The primary composition shifts from lighter to heavier elements as energy increases
- The composition becomes progressively purer above the ankle

Ref: ICRC2023)365

Composition Enhanced Spectrum

- Protons are minimal above the ankle and rare at the highest energies
- Iron is nearly absent from 10^18.4 to 10^19.4 eV
 →
- Sources have low cutoff energies ($E_{cut} \leq Z \times 5$ EeV)
- hard spectra ($\gamma \leq 1$)
- heavy composition

Assessing Muon Contributions in Air Showers

- Data selection:
 - Golden hybrid events: 281 events over 14 years
 - Zenit angels: 62° to 80°
 - Energy: $E > 4 \times 10^{18}$ eV
- Measurements:
 - FD: Energy measurements
 - SD: Muon number estimation
 - ightarrow Relate muon count to primary energy

E/eV

Ref: A. Aab et al. Phys. Rev. Lett. 126 (2021) 152002

October 16, 2024

Q. Dorosti - The Pierre Auger Observatory: Results and Prospects

Muon Puzzle

Result: Muon fluctuations align with models, but muon counts do not!

Remedies:

- Increase hadronic energy fraction lpha in the first interaction
 - ightarrow Impractical due to fine-tuning
- Introduce $\delta \alpha$ across all generations:
 - \rightarrow Not supported by LHC data

Arrival direction: Large Scale

Cosmic-ray flux map in galactic coordinates for energies $E \ge 8 \text{ EeV}$

Normalized rate of events as a function of right ascension

The first-harmonic modulation aligns well with the data (X2/n = 10.5/10); the dashed line represents a constant function

Ref: The Pierre Auger Collaboration, Science 357, 1266–1270 (2017)

- The 3D dipole above 8 EeV is oriented ~125° from the galactic center
- Its position aligns with mixed composition deflected by galactic magnetic fields
- Arrows indicate expected particle deflections by the galactic magnetic field for E/Z = 5 or 2 EeV

Arrival Direction: Intermediate Scale

Whole sky blind search: Excess 5.4 σ , Ψ =24° & E=41EeV

Ref: P. Abreu et al 2022 ApJ 935 170

- Tested 4 different catalogues, ٠ including starburst galaxies and AGNs
- A model-independent analysis of the ٠ Centaurus region finds a 4.1 o significance

October 16, 2024

Q. Dorosti - The Pierre Auger Observatory: Results and Prospects

13

Arrival Direction: Intermediate Scale

Ref: P. Abreu et al 2022 ApJ 935 170

-> Auger Phase II: event-by-event primary mass information - composition enhanced anisotropy studies

Year 2012

60

2006 2008

2010

2014

80

100

2016 2018

2020

Cental 20

10

120 ⁰

Searching for Neutral Particles

Ú

Q. Dorosti - The Pierre Auger Observatory: Results and Prospects October 16, 2024 15

AugerPrime: Observatory Upgrade

- Scintillator-based Surface Detector (SSD) on Water Cherenkov Detector (WCD)
 - \rightarrow measure shower e/µ
- Added smaller PMT in WCD
 → increase dynamic range
- New upgraded electronics board (UUB) \rightarrow improve data processing.
- Radio Detector (RD) atop WCD \rightarrow enhance composition measurements, particularly for horizontal events

AugerPrime: Observatory Upgrade

- Scintillator-based Surface Detector (SSD) on Water Cherenkov Detector (WCD)
 - \rightarrow measure shower e/µ
- Added smaller PMT in WCD
 - \rightarrow increase dynamic range
- New upgraded electronics board (UUB)
 - \rightarrow improve data processing.
- Radio Detector (RD) atop WCD
 - \rightarrow enhance composition measurements, particularly for horizontal events (100% duty cycle)

Q. Dorosti - The Pierre Auger Observatory: Results and Prospects

AugerPrime: Deployment Status

Pre-upgrade stations

• Stations with UUB

Stations with SSD + UUB

Stations with RD + UUB

Stations with RD + SSD + UUB

Auger Phase 2: Enhanced Era with AugerPrime

- Measure mass composition on an event-by-event basis
- Investigate the nature and origin of UHECRs
- Detect UHE neutrinos and photons
- Test new physics at the UHE scale
- Explore geophysical sources of highenergy particles, and more

Xmax, Fluctuations, and Muon Number for Rigidity for Different Source Models