Mind the gap: exclusion limits and unconventional searches for leptoquarks

Tanumoy Mandal

PPC 2024, IIT Hyderabad

What are leptoquarks?

- Leptoquarks are color triplet spin-0 or spin-1 bosons (weak and hypercharged)
- > Carry both lepton and baryon numbers; connector of lepton and quark sector
- Naturally appear in Pati-Salam models, GUT theories, flavour models, neutrino mass models, RPV SUSY models - squarks are leptoquarks etc.
- Bottom-up: scalar LQ can be added by hand; adding vector LQ is tricky need to know the additional gauge structure

Leptoquark species

 Leptoquark (Φ)	Spin	F	Colour	<i>T</i> ₃	Qem	$\lambda_{\rm L}(lq)$	$\lambda_{\mathbf{R}}(lq)$	$\lambda_{\rm L}(\nu q)$
<i>S</i> ₁	0	-2	3	0	1/3	81L	<i>g</i> _{1R}	-g _{1L}
$ ilde{S}_1$	0	-2	3	0	4/3	0	<i>§</i> 1R	0
<i>S</i> ₃	0	-2	3	$+1 \\ 0 \\ -1$	4/3 1/3 -2/3	$\begin{array}{c} -\sqrt{2}g_{3L} \\ -g_{3L} \\ 0 \end{array}$	0 0 0	$0 \\ -g_{3L} \\ \sqrt{2}g_{3L}$
<i>R</i> ₂	0	0	3	1/2	5/3	h _{2L}	h _{2R}	0
₹2	0	0	3	-1/2	2/3	\tilde{h}_{2L}	$-n_{2R}$	n _{2L} 0
				-1/2	-1/3	0	0	h _{2L}
V_{2u}	1	-2	3	1/2	4/3	82L	<i>8</i> 2R	0
				-1/2	1/3	0	<i>8</i> 2R	82L
$\tilde{V}_{2\mu}$	1	-2	3	1/2	1/3	\tilde{g}_{2L}	0	0
				-1/2	-2/3	0	0	Ĩ2L
$U_{1\mu}$	1	0	3	0	2/3	h_{1L}	h_{1R}	h_{1L}
$ ilde U_{1\mu}$	1	0	3	0	5/3	0	\tilde{h}_{1R}	0
$U_{3\mu}$	1	0	3	$^{+1}_{0}$	5/3 2/3 -1/3	$\sqrt{2}h_{3L}$ $-h_{3L}$ 0	0 0 0	$0 \\ h_{3L} \\ \sqrt{2}h_{3L}$

Why leptoquarks?

- Anomalies: LQs are suitable and very popular candidates to explain B-meson decay anomalies, muon (g-2) anomalies
- \rightarrow Higgs physics: enhance the light-guark Yukawa couplings, flavour-violating decays of Higgs like $h \rightarrow \tau \mu$, enhanced di-Higgs production 2002.12571, 1508.01897, 2205.12210
- Dark matter: can act as a portal to dark matter (e.g., singlet fermion) 1807.06547, 1808.07844
- \succ Strong production of uncolored particles: produce right-handed neutrinos, vectorlike leptons or vectorlike guarks
- \rightarrow GW+EWPT: give rise to strong first-order phase transition and can produce gravitational wave detectable in future experiments
- Vacuum stability: LQ can affect the vacuum stability of the SM 1609.03561

Questions will be anaswered

- Can we improve exclusion limits on LQ parameters (mass, BR, couplings)?
- \succ What are the effects of weak and hypercharge of LQs on their exclusion limits?
- \succ Non-observation of LQs are LQs decaying to new "non-standard" decay modes?

1708.06206, 2301.11889, 2312.09189

2209.14605

LQ mass limits from CMS

Overview of CMS leptoquark searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included)

LQ(eq)

 $LQ(\mu q)$

 $LQ(\tau q)$

 $LQ(\nu q)$

LQ mass limits from ATLAS

LQ(qT)

LQ(qµ)

LQ(qv/ql)

Scalar

Coupling exclusion: dilepton-dijet data

	Pair production			Single production		Indirect production			Indirect interference			
Mass (S_1) (TeV)	$\sigma_{\rm PP}$ (fb)	$\varepsilon_{\mathrm{PP}}$	$\mathcal{N}_{\rm PP}$	$\sigma_{\rm SP}~({\rm fb})$	$\varepsilon_{\mathrm{SP}}$	$\mathcal{N}_{\mathrm{SP}}$	$\sigma_{\rm IP}~({\rm fb})$	$\mathcal{E}_{\mathrm{IP}}$	$\mathcal{N}_{\mathrm{IP}}$	$\sigma_{\rm II}~({\rm fb})$	$arepsilon_{\mathrm{II}}$	$\mathcal{N}_{\mathrm{II}}$
1.5	1.4×10^{-1}	0.42	8.2	8.4	0.17	198.5	32.0	0.018	111.2	-275.0	0.007	-267.6
2.5	6.9×10^{-4}	0.32	3.1×10^{-2}	5.4×10^{-1}	0.13	9.8	5.4	0.018	13.4	-102.0	0.007	-99.2
4.0	$4.6 imes 10^{-7}$	0.30	$2.0 imes 10^{-5}$	3.4×10^{-2}	0.20	0.7	1.0	0.028	3.7	-40.2	0.010	-55.9

A. Bhaskar, A. Das, TM, S. Mitra, R. Sharma; PRD 109, 055018 (2024)

Pair production: different orders

Mass exclusion: effects of QED

Model	QCD	QCD + QED
$S_1(y_{10 12}^{LL})$	1418	1423
$S_1(y_{10,12}^{RR})$	1733	1741
$\tilde{S}_1(y_{11,12}^{RR})$	1733	1854
$R_2(y_{20,12}^{LR})$	1852	2012
$R_2(y_{20,12}^{RL})$	1733	1917
$\tilde{R}_2(y_{2112}^{RL})$	1733	1767
$S_3(y_{30,12}^{LL})$	1772	1882

A. Bhaskar, A. Das, TM, S. Mitra, R. Sharma; PRD 109, 055018 (2024)

Mass exclusion: effects of QED

Model	QCD		QCD + QED		
$S_1(y_{10 12}^{LL})$	1418		1423		
$S_1(y_{10,12}^{RR})$	1733		1741		
$\tilde{S}_1(y_{11,12}^{RR})$	1733	Model		QCD	QCD+QED
$R_2(y_{20,12}^{LR})$	1852	$U_1(x_{10,12}^{LL})$		1746	1806
$\begin{array}{c} R_2(y_{20,12}^{RL}) \\ \tilde{z} \end{array}$	1733	$U_1(x_{10,12}^{RR})$		1989	2056
$R_2(y_{21,12}^{RL})$	1733	$\tilde{U}_1(y_{11,12}^{RR})$		1989	2319
$S_3(y_{30,12}^{22})$	1//2	$= V_2(x_{20,12}^{LR})$		2091	2275
		$V_2(x_{20,12}^{RL})$		1979	2217
		$\tilde{V}_2(x_{21,12}^{RL})$		1979	2010
		$U_3(x_{30,12}^{LL})$		2027	2337

Mass exclusion: effects of QED

Model	QCD		QCD + QED					
$S_1(y_{10,12}^{LL})$	1418		1423					
$\tilde{S}_1(y_{10,12})$ $\tilde{S}_1(y_{11,12}^{RR})$	1733	Model	1/+1	QCD		QCD+QED		
$\frac{R_2(y_{20,12}^{LR})}{R_2(y_{20,12}^{RL})}$	1852 1733	$U_1(x_{10,12}^{LL})$		1746		1806		
$\tilde{R}_2(y_{21,12}^{RL})$ $S_3(y_{21,12}^{LL})$	1733 1772	$\tilde{U}_1(x_{10,12}^{RR})$ $\tilde{U}_1(y_{11,12}^{RR})$	1989		2319			
		$= V_2(x_{20,12}^{LR})$ $V_2(x_{20,12}^{RL})$		2091 1979	Model	QCL)	QCD+QED
		$\tilde{V}_2(x_{21,12}^{RL})$		1979	$U_1(x_{10,12}^{LL})$	2038	3	2051
		$U_3(x_{30,12}^{LL})$		2027	$U_1(x_{10,12}^{RR})$ $\tilde{U}_1(y_{11,12}^{RR})$	2276	3	2295 2410
					$V_2(x_{20,12}^{LR})$	2383	3	2451
					$V_2(x_{20,12}^{RL})$	2279)	2360
					$V_2(x_{21,12}^{LL})$ $U_3(x_{30,12}^{LL})$	2278)	2283 2436

Coupling exclusion: high-pT dilepton tail

TM, S. Mitra, S. Raz; PRD 99, 055028 (2019) 12

Coupling exclusion: scalar LQ

A. Bhaskar, A. Das, TM, S. Mitra, R. Sharma; PRD 109, 055018 (2024)

Coupling exclusion: scalar LQ

A. Bhaskar, A. Das, TM, S. Mitra, R. Sharma; PRD 109, 055018 (2024)

Coupling exclusion: scalar LQ

Coupling exclusion: vector LQ

Upcoming...

Coupling exclusion: vector LQ

Upcoming...

Coupling exclusion: vector LQ

18

TooLQit: PROJECT LEPTOQUARK

- Complete LO FeynRules model files for all scalar and vector LQ species; NLO FR model files are under progress; Available here: https://github.com/rsrchtsm/LQ_Models
- > Introduced uniform naming convention, FeynRules notations, Monte-Carlo codes

LQ types	FR notation	Monte Carlo codes				
$S_1({\bf 3},{f 1},{f 1\over3})$	s101	4200011				
$\widetilde{S}_1(\overline{3},1,\frac{4}{3})$	s114	4200114				
$S_3(\overline{3},3,\frac{1}{3})$	s304, s301, s302	4200034, 4200031, 4200032				
$R_2(3, 2, \frac{7}{6})$	r205, r202	4200025, 4200022				
$\widetilde{R}_2(3,2,\frac{1}{6})$	r212, r211	4200122, 4200121				
$\overline{S}_1({\bf 3},{\bf 1},-\tfrac{2}{3})$	s122	4210212				
$U_1({\bf 3},{f 1},rac{2}{3})$	u102	4210012				
$\widetilde{U}_1(3,1,rac{5}{3})$	u115	4210015				
$U_3(3,3,\frac{2}{3})$	u305, u302, u301	4210035, 4210032, 4210031				
$V_2(\overline{3},2,\frac{5}{6})$	v201, v204	4210021, 4210024				
$\widetilde{V}_2(\overline{3},2,-\frac{1}{6})$	v212, v211	4210122, 4210121				
$\overline{U}_1(3,1,-\tfrac{1}{3})$	u121	4210211				

Project goals

- Derive exclusion limits on masses and couplings of all LQ species
- LQ induced effective operators and constrain Wilson coefficients
- Propose new search strategies and improve using advanced methods
- LQ decaying to RHN, VLF many interesting processes

Leptoquark calculator

LHC limits and muon (g-2)

$$\begin{aligned} a_{\ell} &= \frac{N_c}{16\pi^2} \sum_{i=1}^{3} \sum_{\alpha}^{L,R} \left[2\operatorname{Re}(x_{i\ell}^{L\alpha} x_{i\ell}^{R\overline{\alpha}^*}) \frac{m_{\ell} m_{q_i}}{M_{\ell_q}^2} \left\{ 2Q_q \right. \\ &+ Q_{\ell_q} \left((1-\kappa) \ln\left(\frac{\Lambda^2}{M_{\ell_q}^2}\right) + \frac{1-5\kappa_{\alpha}}{2}\right) \right\} \\ &+ (1-2\delta_{L\alpha})(|x_{i\ell}^{L\alpha}|^2 + |x_{i\ell}^{R\overline{\alpha}}|^2) \frac{m_{\ell}^2}{M_{\ell_q}^2} \left\{ \frac{4}{3}Q_q \right. \\ &+ Q_{\ell_q} \left((1-\kappa_{\alpha}) \ln\left(\frac{\Lambda^2}{M_{\ell_q}^2}\right) - \frac{1+9\kappa_{\alpha}}{6}\right) \right\} \\ &+ 2\widetilde{\kappa}_{\alpha} Q_{\ell_q} \operatorname{Im}(x_{i\ell}^{L\alpha} x_{i\ell}^{R\overline{\alpha}^*}) \frac{m_{\ell} m_{q_i}}{M_{\ell_q}^2} \left(\ln \frac{\Lambda^2}{M_{\ell_q}^2} - \frac{1}{2} \right) \end{aligned}$$

Leptoquark+RHN/VLF

22

Jet substructure and boosted top

Take away

- Improved exclusion limits on all leptoquark mass, BR, couplings using dilepton-dijet data, high-pT dilepton tail data
- For the first time, we obtain the improved mass limit when QED effects are included
- Introduce a LQ limit calculator can derive limits for any coupling of any LQ; can derive multicoupling limits
- Most likely LQ are decaying into new final states. Since we have not analyzed those possibilities, we might have missed them
- LQ signatures must be tiny and can also camouflage with background. Need advanced techniques like jet substructure/machine learning to find them out

