

Recent NOvA Results and Prospects

Bipul Bhuyan (on behalf of NOvA Collaboration)

17th International Conference on Interconnections between Particle Physics and Cosmology (PPC 2024)
IIT Hyderabad, Hyderabad
October 14 – 18, 2024

Neutrinos in the Standard Model

- Neutrinos

 Neutrinos do not have electric charge. They only interact weakly.
 - $\checkmark v_e, v_\mu, v_\tau$
 - $\checkmark \quad \bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau$
 - Interacts only through weak force
 - ✓ Mediators: W^{\pm} , Z^0
 - $m_{\nu} \approx 0$
 - ✓ Neutrinos are left handed
 - anti-neutrinos are right handed

So, we see only the by products of the weak interactions.

- ✓ Neutrino interaction cross sections are small, $O(10^{-38} \text{ cm}^2/\text{nucleon})$ at 1 GeV.
- ✓ Quite abundant: 100,000 billion pass through your body each second from the sun.
 -Will stop ~1 neutrino which passes through it in a lifetime!

Neutrino: A new Identity in the last 25 years!

Standard Model

- Neutrinos interact through weak interaction.
- Lepton flavour is strictly conserved.
- Neutrino have zero mass.

Neutrino oscillations & Relative Neutrino Masses (confirmed by SNO, SuperKamiokande, T2K, NoVA etc.)

- Observed neutrino oscillation itself is a great triumph
 - Macroscopic manifestation of quantum effects.
- Indicates non-zero mass for neutrinos
 - Huge impact in particle physics & cosmology
- Neutrino mass states are different from flavor states.
 - As neutrinos travel, they change flavor
- Beyond standard model.

13/10/24

Neutrino Mixing

Neutrinos mix, just like the quarks

$$|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle$$

with $\alpha = e, \mu, \tau$ and $U_{\alpha k}^*$ is the unitary matrix.

- PMNS matrix. CKM matrix for quarks
- Unlike the quarks, mixings are large
 - All mixing angles and mass splitting have been measured.

Two flavor approximation:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) \sim \sin^2(2\theta) \sin^2(\frac{\Delta m_{ij}^2 L}{4E})$$

- Mixing results in oscillation; Probability of oscillation depends on:
 - ✓ Values of the parameters: δ_{CP} , θ_{12} , θ_{13} , θ_{23}

$$\checkmark \Delta m_{ij}^2 = m_i^2 - m_j^2$$

- ✓ Energy of the neutrino: E
- ✓ Distance travelled (baseline): L

Neutrino Oscillation at LBL Experiments

Measure neutrino oscillations by sending neutrino beam across several hundreds of kms. Uses both v_{μ} and \bar{v}_{μ} beam.

Study both v_{μ}/\bar{v}_{μ} disappearance and v_e/\bar{v}_e appearance in the Far detector.

Key Questions for LBL Experiments

- So far only the mass squared difference between neutrino mass states have been measured
 - Two states have similar mass, one is different
- Is it 2 light states + 1 heavy state or 2 heavy states + 1 light state?

Key Questions for LBL Experiments

- Discovery of CP violation in the lepton sector ($\delta_{CP} \neq 0 \text{ or } \pi$)
 - Important for theories of lepto-genesis.
 - The observed CP violation in the quark sector is too small to explain all the matter anti-matter asymmetry in the universe.
 - CP violation in the lepton sector will shed more light on the problem
 - Measurement of δ_{CP} is critical.

Some experiments slightly favor (< 3σ) $\delta_{CP} \sim 270^{\circ} (-90^{\circ})$

Combined results from Reactor +LBL Experiments is far from stable.

- Octant of θ_{23} (sin² $\theta_{23} > 0$?)
 - If $\theta_{23} = 45^{\circ} \rightarrow |U_{\mu3}| = |U_{\tau3}|$

NuMI Off-Axis v_e Appearance (NOvA) Experiment

- NOvA is a long baseline (810 km) neutrino oscillation experiment.
- Uses an artificial ν_{μ} beam of intensity ~900 kW mostly. Recent NuMI record: 1.018 MW.
- Near detector at Fermi Lab and the far detector at Ash River.
- Two functionally identical detector differing in size.
- The two detectors are located 14 mrad off from the on-axis.

Experiment goals:

Using $\nu_{\mu} \rightarrow \nu_{\mu} \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$

- ✓ Precise measurement of Δm_{32}^2
- ✓ Mixing angle θ_{23}

Using
$$\nu_{\mu} \rightarrow \nu_{e} \left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \right)$$

 \checkmark Neutrino mass hierarchy

- ✓ CP violating phase
- ✓ Mixing angle θ_{23}

NOvA Detectors

Far Detector

14 kton

344k channels

2008: Construction starts

2014: Starts Operation

Near Detector 0.3 kton 20k channels

100 m underground 1 km baseline

The NOvA Collaboration

211 members from 50 institutions in 8 countries.

9 institutions from India.

- Graduated 11 Ph.D. students
- ✓ 8 Ph.D. students are currently on NOvA

NOvA Detectors Capability

Detector elements: PVC cells with 15% TiO₂, liquid scintillator, WLS fibers and APDs.

Neutrino Beam and the Dataset

2023

27

13

 \rightarrow

 \rightarrow

120 GeV protons on a carbon target, produce mesons which subsequently produces neutrinos through leptonic decays.

Cumulative Exposure

(in units of 10^{20} POT)

2020

14

13

 ν beam:

 $\overline{\nu}$ beam:

Oscillation results from NOvA only with data collected till 2023. Double the neutrino data since 2020.

13/10/24

11

Now configured for $\overline{\nu}$ running.

Improvements in the 2024 Analysis

$u_{\mu} \rightarrow v_{\mu} \text{ and } \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu} \text{ at the Far Detector}$

 \checkmark Sensitive to the measurement of Δm^2_{32} and mixing angle θ_{23}

$\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ at the Far Detector

✓ Sensitive to the mass hierarchy, δ_{CP} and mixing angle θ_{23}

Fit to the Oscillation Parameters

13/10/24

2024: Mass Ordering Preference, Δm_{32}^2

Preference for normal mass ordering is enhanced significantly by using the reactor constraint from Daya Bay. Phys. Rev. Lett. 130, 161802 (20)

Phys. Rev. Lett. 130, 161802 (2023) Phys. Rev. D 72 013009 (2005)

No reactor constraint	Nor	reactor	constraint	
-----------------------	-----	---------	------------	--

1D θ_{13} constraint

2D (θ_{13} , Δm_{32}^2) constraint

Normal ordering preference

(and Bayes factor)

69%	76 %	87 %
(2.2)	(3.2)	(6.8)

Precision Measurement of Δm_{32}^2

NOvA presents the best single experiment and world leading precision of ~ 1.5% on $|\Delta m_{32}^2|$. Most precisely known PMNS parameter.

17

Measurement of $sin^2\theta_{23}$

Global consistency. NOvA measurements are consistent with accelerator, atmospheric and various joint results.

13/10/24

Mass ordering and δ_{CP}

- NOvA data prefer regions where the effects of matter and CP phase cancel.
- Regions where these add (NO, $\delta_{CP} = 3\pi/2$) and (IO, $\delta_{CP} = \pi/2$) are largely ruled out.
- If the ordering is inverted, CP conserving values of $\delta(0, \pi, 2\pi)$ are ruled out at 3σ .

Comparison of 2020 and 2024 Results

- Strong consistency between 2020 and 2024 results, with improved constraint in the same regions.
- T2K, joint fits favor different regions in NO, same region in IO. Joint fit results are based on 2020 dataset

Summary

- NOvA experiment has released new data in 2024 doubling the neutrino data from the last dataset in 2020.
 - Major improvements in the new analysis including the addition of a new low energy sample.
 - Most precise measurement of Δm_{32}^2 with a precision of ~1.5%. Good consistency ٠ with the previous results.
 - Slight preference for θ_{23} in the upper octant; maximal (μ/τ -symmetric) is a very ٠ good fit.
 - Data prefer oscillation parameters to be in region where effects of matter and CP phase cancel.
 - Interpretation of CP violation is strongly coupled to the resolution of the mass ٠ hierarchy problem.
- NOvA will collect data till the end of 2026.
 - Goal is to double the anti-neutrino data.
 - Broad physics program: Joint fits, Sterile searches, NSI, cross-section measurements, exotics, cosmic ray physics and many more.

13/10/24

21

Backup

DUNE: Sensitivity vs. time

Important sensitivity milestones throughout beam physics program

13/10/24

NOvA+T2K Joint Fit Results: MO and δ_{CP}

For both mass orderings, $\delta_{CP} = \frac{\pi}{2}$ lies outside the 3σ credible interval.

Normal Ordering allows for a broad range of permissible δ_{CP} .

For the Inverted Ordering, CP conserving values of $\delta_{CP}(0,\pi)$ lie outside the 3σ credible interval.

Including the Δm_{32}^2 constraint from the Daya Bay, the mass ordering preference reverses back to **Normal Ordering**.

	NOvA - T2K w/o reactor	NOvA – T2K – 1D Daya Bay	NOvA - T2K - 2D Daya Bay	ľ
Bayes factor	2.47 Inverted/Normal ~71% : ~29% posterior	1.34 Inverted/Normal ~57% : ~43% posterior	1.44 Normal/Inverted ~59% : ~41% posterior	

13/10/24

Systematic Uncertainties

- Improvements in the 2024 results: new pion-production systematic uncertainties, improved light response model and neutron propagation uncertainty.
- ND constraints reduce the systematic uncertainties in the FD predictions from ~15% to 4 - 5%.
- Statistical uncertainties are dominant in the oscillation measurement.

θ_{12} and Δm^2_{21}

 1.5σ

- Solar neutrino measurements have the best sensitivity to constrain the so-called solar mixing angle θ_{12} and to a lesser degree, the Δm^2_{21} mass splitting.
 - Relies on the validity of the SSM predictions for solar neutrino fluxes.
 - Electron-neutrino survival probability (P_{ee}) of solar neutrinos is measured in the energy range of ~ 1 MeV to about 15 MeV.
- Reactor anti-neutrino data from KamLAND provides complimentary measurements.
- Tension between solar and reactor result,

$$\begin{aligned} \sin^2(\theta_{12}) &= 0.316^{+0.034}_{-0.026} \\ \Delta m^2_{21} &= 7.54^{+0.19}_{-0.18} \times 10^{-5} eV^2 \\ \sin^2(\theta_{12}) &= 0.305 \pm 0.014 \\ \Delta m^2_{21} &= 6.10^{+1.04}_{-0.75} \times 10^{-5} eV^2 \\ \sin^2(\theta_{12}) &= 0.305^{+0.013}_{-0.012} \\ \Delta m^2_{21} &= 7.49^{+0.19}_{-0.17} \times 10^{-5} eV^2 \end{aligned}$$

- JUNO can simultaneously measure Δm^2_{21} and θ_{12} using reactor anti-neutrinos and solar neutrinos
- Hyper-K will improve the solar results.

High-precision measurements of 8_B solar neutrinos by Super-K and SNO dominate the combined fit to all solar neutrino data.

θ_{13} and Δm^2_{32}

• Reactor experiments use the inverse β –decay reaction with prompt and delayed γ signal to detect anti-neutrinos with liquid scintillator target

$$\overline{\nu}_{e} + p \rightarrow e^{+} + n$$

$$\downarrow \stackrel{\sim 180 \ \mu s}{\rightarrow} + p \rightarrow d + \gamma (2.2 \ \text{MeV})$$

$$\downarrow + Gd \rightarrow Gd^{*}$$

$$\stackrel{\sim 30 \ \mu s}{\text{for } 0.1\% \ \text{Gd}} \qquad \downarrow \text{Gd} + \gamma \text{'s } (\sim 8 \ \text{MeV})$$

- Event rate without oscillation ~ 1 (ton.GW_{th}.day)^{-1 Δm^{2}_{32} (IO)}
- Survival Probability: θ_{12} term is negligible at DayaBay baseline.

$$P(\bar{\nu}_e \rightarrow \bar{\nu}_e) = 1 - \frac{\sin^2 2\theta_{13} \left[\cos^2 \theta_{12} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right) + \sin^2 \theta_{12} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right) \right]}{- \left[\cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E} \right) \right]}$$

 New results from DayaBay using neutron-Gadolinium (nGd) capture.

$$\sin^2 2\theta_{13} = 0.0853^{+0.0024}_{-0.0024}$$
 (2.8% precision)

Normal hierarchy:

Inverted hierarchy:

$$\Delta m_{32}^2 = + \left(2.454^{+0.057}_{-0.057}\right) \times 10^{-3} \text{ eV}^2$$

$$\Delta m_{32}^2 = - \left(2.559^{+0.057}_{-0.057}\right) \times 10^{-3} \text{ eV}^2$$
(2.3% precision)

13/10/24

27

2

JUNO: Physics Outlook

Precision of $\sin^2 2\theta_{12}$, Δm_{21}^2 , $|\Delta m_{32}^2| < 0.5\%$ in 6 yrs

	Central Value	PDG2020	$100 \mathrm{days}$	6 years	20 years
$\Delta m_{31}^2 \; (\times 10^{-3} \; {\rm eV}^2)$	2.5283	$\pm 0.034~(1.3\%)$	$\pm 0.021~(0.8\%)$	$\pm 0.0047 \ (0.2\%)$	$\pm 0.0029 \ (0.1\%)$
$\Delta m_{21}^2 ~(\times 10^{-5} ~{\rm eV}^2)$	7.53	± 0.18 (2.4%)	± 0.074 (1.0%)	$\pm 0.024 \ (0.3\%)$	$\pm 0.017 \ (0.2\%)$
$\sin^2 \theta_{12}$	0.307	$\pm 0.013~(4.2\%)$	$\pm 0.0058~(1.9\%)$	$\pm 0.0016 \ (0.5\%)$	$\pm 0.0010~(0.3\%)$
$\sin^2 \theta_{13}$	0.0218	± 0.0007 (3.2%)	± 0.010 (47.9%)	± 0.0026 (12.1%)	± 0.0016 (7.3%)

JUNO sensitivity on Neutrino MO: 3σ (reactors only) @~ 6 yrs * 26.6 GW_{th} exposure MO sensitivity with reactor + Atmospheric neutrino analysis is expected soon.

Physics	Sensitivity
Neutrino Mass Ordering	3σ (~1 σ) in 6 yrs by reactor (atmospheric) \bar{v}_e
Neutrino Oscillation Parameters	Precision of $\sin^2\theta_{12}$, Δm^2_{21} , $ \Delta m^2_{32} < 0.5\%$ in 6 yrs
Supernova Burst (10 kpc)	~5000 IBD, ~300 eES and ~2000 pES of all-flavor neutrinos
DSNB	3σ in 3 yrs
Solar neutrino	Measure Be7, pep, CNO simultaneously, measure B8 flux independently
Nucleon decays $(p \rightarrow \overline{\nu}K^+)$	8.3×10 ³³ years (90% C.L.) in 10 yrs
Geo-neutrino	~400 per year, 5% measurement in 10 yrs

Hyper-K Experiment

Upcoming next generation neutrino physics expt. at J-PARC

• 295 km baseline; v_{μ} or \overline{v}_{μ} selected by horn current. 1.3 MW beam

Will use the INGRID on-axis and upgraded magnetized ND280 off-axis detectors 280 m downstream as the ND system.

- Measurements constrain uncertainty on flux and neutrino interaction models.
- ND280: Active scintillator + passive water targets
 - Tracking with time projection chambers
 - Magnetized for charge & momentum measurement.

Hyper-K Experiment- δ_{CP} Sensitivity

Projected sensitivity is based on T2K systematics and possible improvements for HK.

After 10 HK years, 61% of true δ_{CP} values Can be excluded at 5σ level.

Hyper-K Experiment- MO and $sin^2\theta_{23}$ Sensitivity

If the mass ordering is not known, combining the results from beam measurements and atmospheric neutrino observations will resolve the parameter degeneracy.

Probe 2-3 mixing through dip in

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) and P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$

- Select 1 ring μ-like events in the far detector
- 10 years of running, 1:3 $v: \overline{v}$ run plan

Wrong octant can be excluded at 3σ for true $sin^2\theta_{23} < 0.47$ and true $sin^2\theta_{23} > 0.55$.

Oscillation Sensitivity for DUNE

- Reconstructed spectra of selected CC-like events
- Includes full FD systematics
- 3.5 years neutrino beam mode
- 3.5 years anti-neutrino beam mode
- ~ 1000 $v_e/\overline{v_e}$ events in 7 years
- ~10,000 v_{μ}/\bar{v}_{μ} events in 7 years
- Simultaneous fit to four spectra de to extract oscillation parameters

Neutrino Mode

Antineutrino Mode

Eur. Phys. J. C 80 (2020) 10, 978

CP Violation Sensitivity

- 5 σ discovery potential for CP violation over > 50% of δ_{CP} values
- 7 16° resolution to δ_{CP} , with external input only for solar parameters.
- Simultaneous measurement of neutrino mixing angles and δ_{CP}

Mass Hierarchy

Complimentary between DUNE and Hyper-K

Characteristics	DUNE	JD/KD
Baseline (km)	1285	295~(1100)
$ ho_{ m avg}~({ m g/cm^3})$	2.848	2.7(2.8)
Beam	LBNF [16]	J-PARC [57]
Beam Type	wide-band, on-axis	narrow-band, 2.5° off-axis
Beam Power	1.2 MW	$1.3 \; \mathrm{MW}$
Proton Energy	$120 { m ~GeV}$	$30 {\rm GeV}$
P.O.T./year	1.1×10^{21}	$2.7 imes 10^{22}$
Flux peaks at (GeV)	2.5	0.6
1^{st} (2^{nd}) oscillation maxima	26(0.87) $0.6(0.2)/11$	0.6(0.2)/1.8(0.6)
for appearance channel (GeV)	2.0 (0.87)	0.0(0.2) / 1.8(0.0)
Detector mass (kt)	40, LArTPC	187 each, water Cherenkov
Runtime $(\nu + \bar{\nu})$ yrs	5 + 5	2.5 + 7.5
Exposure (kt·MW·yrs)	480	2431
Signal Norm. Error (App.)	2%	5%
Signal Norm. Error (Disapp.)	5%	3.5%

S.K. Agarwalla et. al. arXiv:2211.10620

Coverage in true δ_{CP} for achieving $\geq 3\sigma$ leptonic CPV as a function of true $sin^2\theta_{23}$

None of the experiments can achieve the milestone of 75%. However, their combination makes CP coverage For the entire canvas of $sin^2 \theta_{23}$ above 75%.

Neutrino detector masses and sensitive energy ranges.

