Gravitational Waves: Searching for BSM Physics in the Biggest Bangs since the Big Bang

Gravitational Waves

- General relativity proposed by Einstein 1915
- He predicted gravitational waves in 1916

Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. EINSTEIN.

Bei der Behandlung der meisten speziellen (aleht prinzipiellen) Prohinuf dem Gebiete der Gravitationstheorie kann man sich damit begräß die g_{xx} in erster Näherung zu berechnen. Dabei bedient man sich Vorteil der imaginären Zeitvariable x_x m it aus denselben Gründen in der speziellen Belativitätstheorie. Unter «erster Näherung» ist de verstanden, daß die durch die Gleichung

> Albert Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation, 22.6.Berlin 1916

 $g_{11} = -\dot{h}_{11} + \gamma_{11}$

• Tried to retract prediction in 1936!

Indirect Detection

- Binary pulsar discovered 1974 (Hulse & Taylor)
- Emits gravitational waves
- Change in orbit measured

for years

Perfect agreement with Einstein

Nobel Prize 1993

Direct Discovery of Gravitational Waves

• Measured by the LIGO experiment in 2 locations

Fusion of two massive black holes

Masses ~ 36, 29 solar masses Radiated energy ~ 3 solar masses

LIGO-Virgo-KAGRA Black Holes & Neutron Stars

Observations of Neutron Star Merger (Kilonova)

Dark Matter Effects in Neutron-Star Mergers?

Large DM fraction could give additional feature in GW spectrum & have measurable effect on equation of state

Supermassive Black Holes in Active Galactic Nuclei: Image of M87

Mass ~ 6.5 × 10⁹ solar masses

Future Step: Interferometer in Space

Supermassive black holes in galactic centres ≳ 10⁶ × Sun Detect mergers? Intermediate masses?

LISA (+ Taiji)

8

Gravitational Wave Spectrum

- Gap between ground-based optical interferometers & LISA
 - Formation of supermassive black holes (SMBHs)
 - Supernovae? Phase transitions? ...
- Atom interferometry?

How to Make a Supermassive BH?

SMBHs from mergers of intermediate-mass BHs (IMBHs)?

Gravitational Waves from IMBH Mergers AION

Probe formation of SMBHs Synergies with other GW experiments (LIGO, LISA), test GR

adurina, Buchmueller, JE, Lewicki, McCabe & Vaskonen: arXiv:2108.02468

t/day

Constraints on Graviton Mass

- AION 1-km:
- 10⁻²⁴ eV with LIGO/Virgo-like event
- 2 × 10⁻²⁵ eV with heavier BHs
- AEDGE:
- Order of magnitude more sensitive

Lorentz Violation

- AION 1-km: sensitivity 10 × LIGO/Virgo for $\alpha = \frac{1}{2}$
- AEDGE: sensitivity 1000 × LIGO/Virgo for $\alpha = \frac{1}{2}$

Probing Cosmological Phase Transitions

Simulation of bubble collisions – D. Weir

AEDGE: Bertoldi, ..., JE et al: arXiv:1908.00802

Pulsar Timing Arrays (PTAs)

NANOGrav & other PTAs see nanoHz GW signal

NANOGrav 15-Year Data

NANOGrav GWs arXiv:2306.16213 (a) (c) 0.8 log₁₀(Excess timing delay [s]) Hellings–Downs spectrum 6 Power-law posterior 0.6 Median power-law amplitude; $\gamma = 13/3$ 0.4 $\Gamma(\xi_{ab})$ 0.2 0.0æ -0.2 $\gamma = 13/3$ -0.4 30 120 90 150 -8.75-8.50-8.25-8.00-7.7560 180 0 log₁₀(Frequency [Hz]) Separation Angle Between Pulsars, ξ_{ab} [degrees] Correlated Hellings-Downs (b) (d) pulsar time delays angular correlation 0.9 γ varied $\gamma_{GWB} = 13/3$ 0.6 Jr.º. $\Gamma(\xi_{ab})$ 14.0 $\log_{10}A_{\rm GWB}$ 0.3 14.2 0.0 14.4 $F_{\rm ref} = 1 \, {\rm yr}^{-1} \approx 32 \, {\rm nHz}^{-1}$ 14.6 $= 0.1 \text{ yr}^{-1} \approx 3.2 \text{ nHz}$ -0.3 14^{.8} 4.5 30 60 90 120 150 2.53.03.5 4.0 0 180 γGWB Separation Angle Between Pulsars, ξ_{ab} [degrees]

Evidence for GWs: Hellings-Downs angular correlation Bayes factor ~ 200

IPTA Data Compilation

The Biggest Bangs since the Big Bang?

SMBH binaries?

Astrophysical Interpretations AION

Fits use overlaps of data and model violins in each bin **NB: Fits go beyond simple power-law approximations** Better fit to spectrum if evolution driven by both environment & GWs

JE, Fairbairn, Hütsi, Raidal', Urrutia, Vaskonen & Veermäe: arXiv:2306.17021

Probing Cosmic Strings

Superstring Fit to NANOGrav Alon

(Super)string model compatible with LVK for string tension $G\mu \sim 10^{-12} - 10^{-11}$, intercommutation probability $p \sim 0.001 - 0.01$

JE, Fairbairn, Franciolini, Hütsi, Iovino, Lewicki, Urrutia, Vaskonen & Veermäe, arXiv:2308.08546

Effect of Matter Domination

JE, Lewicki, Lin, & Vaskonen: arXiv:2306.17147

Phase Transition Fit to NANOGrav AION

JE, Fairbairn, Franciolini, Hütsi, Iovino, Lewicki, Raidal, Urrutia, Vaskonen & Veermäe, arXiv:2308.08546

Domain Wall Fit to NANOGrav Alor

Domain wall model compatible with cosmology for annihilation temperature $T_{ann} \sim \text{GeV}$ (hidden sector)

JE, Fairbairn, Franciolini, Hütsi, Iovino, Lewicki, Raidal, Urrutia, Vaskonen & Veermäe, arXiv:2308.08546

JE, Fairbairn, Franciolini, Hütsi, Iovino, Lewicki, Raidal, Urrutia, Vaskonen & Veermäe, arXiv:2308.08546

Extension of Fits to Higher Frequencies Alon

JE, Fairbairn, Franciolini, Hütsi, Iovino, Lewicki, Raidal, Urrutia, Vaskonen & Veermäe, arXiv:2308.08546

Results For NANOGrav Fits Alon

Scenario	Best-fit parameters	ΔBIC	Signatures
GW-driven SMBH binaries	$p_{ m BH}=0.07$	6.0	FAPS, LISA, mid- <i>f</i> ,,
GW + environment-driven	$p_{\rm BH} = 0.84$	Baseline	FAPS, LISA, mid- <i>f</i> ,,
SMBH binaries	$\alpha = 2.0$	(BIC = 53.9)	
	$f_{\rm ref} = 34 { m nHz}$		
Cosmic (super)strings	$G\mu = 2 \times 10^{-12}$	-1.2	, LISA, mid- f , LVK, ET
(CS)	$p = 6.3 \times 10^{-3}$	(4.6)	
Phase transition	$T_* = 0.34 \text{ GeV}$	-4.9	·,,,,
(PT)	$\beta/H = 6.0$	(2.9)	
Domain walls	$T_{\rm ann} = 0.85 { m ~GeV}$	-5.7	, LISA?,,,
(DWs)	$\alpha_{*} = 0.11$	(2.2)	
Scalar-induced GWs	$k_* = 10^{7.7} / \mathrm{Mpc}$	-2.1	,,,,,
(SIGWs)	A = 0.06	(5.8)	
	$\Delta = 0.21$		
First-order GWs	$\log_{10} r = -14$	-2.0	·,,,,
(FOGWs)	$n_{ m t}=2.6$	(6.0)	
	$\log_{10} (T_{\rm rh}/{ m GeV}) = -0.67$		
"Audible" axions	$m_a = 3.1 \times 10^{-11} \mathrm{eV}$	-4.2	,,,,,
	$f_a=0.87M_{ m P}$	(3.7)	

 $FAPS \equiv fluctuations, anisotropies, polarization, sources, mid-f \equiv mid-frequency experiment, e.g., AION [1], AEDGE [2], LVK \equiv LIGO/Virgo/KAGRA [3-5], ET \equiv Einstein Telescope [6] (or Cosmic Explorer [7]), ----- \equiv not detectable$

Outline

- Discovery of gravitational waves from mergers of black holes and neutron star mergers (kilonovae)
 - Dark matter signal in gravitational waves from kilonovae?
- Supermassive black holes exist: how to assemble them?
 - Atom interferometry! Can also probe graviton mass, test Lorentz invariance
- Discovery of nanoHz GW background by Pulsar Timing Arrays (PTAs)
- Supermassive black hole binaries?
- BSM scenarios fit NANOGrav data better than BH binaries!

JE, Fairbairn, Franciolini, Hütsi, Iovino, Lewicki, Urrutia, Vaskonen & Veermäe, arXiv:2308.08546