Recent Measurements of Galactic Cosmic Rays with GRAPES-3 Experiment

Pravata Mohanty Infute of Fundamental Research, India or the GRARES-3 Collaboration)

PPC2024, October 14-18, 2024, IIT Hyderabad

Cosmic Ray Spectrum

Flux of cosmic rays follows a power-law distribution and it decreases rapidly with energy.

- at 10¹¹ eV, 1 particle/m² sec
- at 10¹⁵ eV, 1 particle/m² year
- at 10¹⁸ eV, 1 particle/km² year

Knee: Limit of Galactic acceleration Spectral slope from -2.7 to -3.1

Ankle: Transition to extra-galactic sources

GZK: End of the cosmic ray spectrum Interaction with 3°K CMB photon

The GRAPES-3 Collaboration

GRAPES-3 is located in Ooty, India 11.4° N lat., 76.7°E lon., 2200 m alt.

- 1. Tata Institute of Fundamental Research, Mumbai, India
- 2. Osaka City University, Osaka, Japan
- 3. Aichi Institute of Technology, Aichi, Japan
- 4. J.C. Bose Institute, Kolkata, India
- 5. Indian Institute of Science & Edu. Res. Pune, India
- 6. Chubu University, Kasugai, Aichi, Japan
- 7. Hiroshima City University, Hiroshima, Japan
- 8. Aligarh Muslim University, Aligarh, India
- 9. Indian Institute of Technology, Kanpur, India
- 10. North Bengal University, Siliguri, India
- 11. Vishwakarma Inst. of Information Tech., Pune, India
- 12. Kochi University, Kochi, Japan
- 13. Utkal University, Bhubaneswar, India
- 14. Dibrugarh University, Dibrugarh, India
- 15. Nagoya University, Nagoya, Japan
- 16. Tezpur Central University, Tezpur, India
- 17. Indian Institute of Technology, Jodhpur, India
- 18. Indian Institute of Technology, Indore, India
- 19. Institute for Cosmic Ray Research, Tokyo U., Japan
- 20. Amity University, Noida, India
- 21. Institute of physics, Bhubaneswar, India

The GRAPES-3 experiment in Ooty, India

- 400 plastic scintillator detectors (1 m² area) with 8 m inter-separation spread over 25,000m²
- 560 m² muon detector consisting 3712 proportional counters (6m x 0.1m x 0.1m).
- 3 x 10⁶ EAS events per day in TeV- PeV range with median energy of 15 TeV.

- A shower is triggered if at least 10 scintillator detectors receive signal > 0.5 particle
- Muon detector only records muon component after receiving the shower trigger from scintillators

Shower Reconstruction

 Shower parameters such as core location (X_c, Y_c), size (N_e) and age (s) are obtained by fitting the observed lateral densities with NKG function as below and directions of the shower (zenith and azimuth) are obtained by fitting a plane front to the observed relative arrival times.

$$\rho_i = \frac{N_e}{2\pi r_m^2} \frac{\Gamma(4.5-s)}{\Gamma(s)\Gamma(4.5-2s)} \left(\frac{r_i}{r_m}\right) \left(1+\frac{r_i}{r_m}\right)^{s-4.5}$$

Performances of the scintillator array

GRAPES-3 muon telescope (560 m²)

- Muon detector consists of 16 modules of 35 m² area each.
- Threshold of muons = 1 GeV
- Muons recorded associated with each EAS trigger
- Self triggered muons are recorded in 169 directional bins with 4° resolution with a statistics of 4 billion muons per day

Proportional counter filled with P10 gas

Proportional counter fabrication at GRAPES-3. ~4000 successfully made.

Rust removal

Hermetic seal fixing

Evacuation

P10 gas filling

Long term test

PRC spectrum

Muon telescope upgrade (560 m² to 1130 m²)

An operational module

Geant4 response of a muon module

.....

550 gm cm⁻² of concrete absorber. Threshold for muons = 1 GeV x sec(theta).

Tracking of muons in a shower event

Composition Analysis: Data selection and quality cuts

- Showers were selected within 50m from the centre of the array to exclude those landing outside the array while getting mis-reconstructed to be inside the array less than 1%.
- Showers were selected beyond 60 from the centre of the muon modules to restrict the hadron punch-through less than 2%.

Fitting MMD and Extraction of Composition

- Observed MMD cannot be described either H or Fe requiring intermediate masses.
- For a given N_e bin, response matrix is generated using MC simulation and Gold's unfolding algorithm is used for relative composition for the five mass groups.

Relative composition of proton primary

Relative composition for proton primary was obtained for each shower size (N_e) separately.

Systematics uncertainties from different sources. Limited MC statistics and differential spectral profiles are the dominant sources of uncertainties.

GRAPES-3 Proton Energy Spectrum from 50 TeV - 1.3 PeV

The observed spectral hardening by GRAPES-3 above165 TeV challenges the longheld belief that the spectrum is described by a simple power-law below the Knee. Scintillator response to γ : 4%

It is still 20% of the total detected particles. Underestimation of size if we ignore this

Simulation shows 2 cm thick scintillator detects 10% more particles than 5 cm. An independent work by Jhansi Bhavani with experimental data shows similar result

Muon telescope

Poster by Saswat Mishra

Umananda Goswam

F. Varsi et al., PRL 132, 051002 (2024)

PHYSICAL REVIEW LETTERS 132, 051002 (2024)

Evidence of a Hardening in the Cosmic Ray Proton Spectrum at around 166 TeV Observed by the GRAPES-3 Experiment

F. Varsi,¹ S. Ahmad,² M. Chakraborty,³ A. Chandra,² S. R. Dugad,³ U. D. Goswami,⁴ S. K. Gupta,³ B. Hariharan,³ Y. Hayashi,⁵ P. Jagadeesan,³ A. Jain,³ P. Jain,¹ S. Kawakami,⁵ H. Kojima,⁶ P. Lipari,⁷ S. Mahapatra,⁸ P. K. Mohantyo,^{3,*} R. Moharana,⁹ Y. Muraki,¹⁰ P. K. Nayak,³ T. Nonaka,¹¹ A. Oshima,⁶ B. P. Pant,⁹ D. Pattanaik,^{3,8} S. Paul,³ G. S. Pradhan,¹² M. Rameez,³ K. Ramesh,³ L. V. Reddy,³ S. Saha,¹ R. Sahoo,¹² R. Scaria,¹² S. Shibata,⁶ and M. Zuberi³

(GRAPES-3 Collaboration)

¹Indian Institute of Technology Kanpur, Kanpur 208016, India
²Aligarh Muslim University, Aligarh 202002, India
³Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
⁴Dibrugarh University, Dibrugarh 786004, India
⁵Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
⁶College of Engineering, Chubu University, Kasugai, Aichi 487-8501, Japan
⁷INFN, Sezione Roma "Sapienza", Piazzale Aldo Moro 2, 00185 Roma, Italy
⁸Utkal University, Bhubaneswar 751004, India
⁹Indian Institute of Technology Jodhpur, Jodhpur 342037, India
¹⁰Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan
¹¹Institute of Cosmic Ray Research, Tokyo University, Kashiwa, Chiba 277-8582, Japan

(Received 18 April 2023; revised 16 October 2023; accepted 4 January 2024; published 31 January 2024)

We present the measurement of the cosmic ray proton spectrum from 50 TeV to 1.3 PeV using 7.81×10^{6} extensive air shower events recorded by the ground-based GRAPES-3 experiment between 1 January 2014 and 26 October 2015 with a live time of 460 day. Our measurements provide an overlap with direct observations by satellite and balloon-based experiments. The electromagnetic and muon components in the shower were measured by a dense array of plastic scintillator detectors and a tracking muon telescope, respectively. The relative composition of the proton primary from the air shower data containing all primary particles was extracted using the multiplicity distribution of muons which is a sensitive observable for mass composition. The observed proton spectrum suggests a spectral hardening at ~166 TeV and disfavors a single power law description of the spectrum up to the Knee energy (~3 PeV).

DOI: 10.1103/PhysRevLett.132.051002

https://www.eurekalert.org/news-releases/1033228

- https://phys.org/news/2024-02-kink-proton-spectrum-knowledge-cosmic.html
- https://physicsworld.com/a/kink-in-cosmic-ray-spectrum-puzzles-astrophysicists/
- https://scienmag.com/tag/kink/
- https://www.azoquantum.com/News.aspx?newsID=10089
- https://ground.news/article/a-new-kink-in-proton-spectrum-to-enhance-our-knowledge-of-

cosmic-ray-origin

- https://vajiramias.com/current-affairs/what-is-the-grapes-3-experiment/
- 65c09fddad015e0598b89b04/
- https://news.helloscholar.in/discovery-of-a-new-cosmic-ray-feature-by-grapes-3-experiment/
- https://stories.myspaceastronomy.com/a-new-kink-in-proton-spectrum-to-enhance-ourknowledge-of-cosmic-ray-origin/
- https://www.thehansindia.com/technology/tech-news/grapes-3-experiment-redefines-laws-ofcosmic-ray-physics-856523
- https://www.spacedaily.com/reports/
- GRAPES_3_experiment_unveils_unexpected_twist_in_cosmic_ray_spectrum_999.html
- https://simplysciencenews.com/cosmic-ray-proton-spectrum-feature-cosmic-ray-origin/

physicsworld

ASTROPARTICLE PHYSICS RESEARCH UPDATE

Kink in cosmic ray spectrum puzzles astrophysicists ${}^{\rm 15\,Feb\,2024}$

Kinky particles: the GRAPES-3 experiment in Ooty, India depicted with a simulated cosmic ray shower. The inset shows the cosmic ray proton spectrum measurement by GRAPES-3 along with observations by other space and ground-based experiments. (Courtesy: TIFR)

Using observations from the GRAPES-3 muon detector, physicists in India and Japan have explored a poorly understood region of the cosmic ray energy spectrum in unprecedented detail. Fahim Varsi at the Indian Institute of Technology Kanpur and colleagues identified a previously unseen feature in the form of a kink in the spectrum. The observations suggest a need to rethink the origins of cosmic rays.

statistical errors are very large APJ 2022

DAMPE proton + helium data suggests a hardening above 150 TeV PRD 2024

HAWC data (ICRC2023) shows a similar profile although systematic uncertainties are large.

Cosmic-ray proton spectrum

Three component model of cosmic ray spectra from 10 GeV to 100 PeV

A&A 458, 1-5 (2006), V. I. Zatsepin and N. V. Sokolskaya

- The model assumed one class of sources (SNRs) terminates its effective acceleration at ~50 TeV
- The second source class, presumably supernovae within the local supper bubble accelerates cosmic rays up to rigidity of 4 PeV, producing the Knee.
- Assumed contribution of nova stars below ~300 GeV.

Gaisser-Stanev-Tilav (GST) model of cosmic ray composition

T.K. Gaisser, T. Stanev, S. Tilav, Front. Phys. 2013, 8(6):748-758

Future space-based experiments can reach up to Knee

tee FD Eeder FD FD EE

MOONRAY

Cosmic ray anisotropy results from GRAPES-3

Analysis was performed using 3.7 billion cosmic ray events spanning 4 years at median energy of 16 TeV. Time scrambling method is used for background map generation.

Relative intensity (x10

Comparison with other experiments

Summary and future outlook

- We have measured cosmic ray proton spectrum below the Knee overlapping with direct measurements.
- We have observed a spectral hardening in the proton spectrum above 165 TeV.
- We have observed two small-scale anisotropic structures from near equatorial location.
- Analysis for extraction of spectrum for other elements below and above the knee is in progress.
- Analysis of large-scale anisotropy is in progress
- We hope the upgrade of the muon telescope together with scintillator array expansion can provide enhanced sensitivity for cosmic ray composition and gamma ray studies

Thank you for your attention