The KM3NeT Neutrino Telescope: Results from First Data

Sara Rebecca Gozzini

Instituto de Física Corpuscular IFIC, CSIC-UV

October 14, 2024



Underwater astronomy and high-exposure accumulator of atmospheric neutrinos using an instrumented portion of the Mediterranean Sea as a detector medium.

[J.Phys.G:Nucl.Part.Phys.43 084001 (2016)]

## KM3NeT: layout



## KM3NeT: layout

Current status: 28 lines ARCA, 23 lines ORCA connected and recording data

Once completed:

 $2\,\times\,500$  Mton ARCA, 7 Mton ORCA

**Optical module**: 31 × 3" PMTs Digital photon counting Directional information Wide angle of view



...all data transmitted to shore via optical fiber

- Still Salles

## Very-large volume Cherenkov neutrino detector



Look through the Earth for leptons from  $\nu \rightarrow$  lepton conversion.  $\sigma_{\nu \rightarrow l} \sim 10^{-38} \text{ cm}^2$  at 1 GeV! Low rate  $\rightarrow$  very large (natural) reservoirs of transparent medium. Scattering length influences pointing precision.

## Very-large volume Cherenkov neutrino detector data



Times, positions of hit PMTs $\rightarrow$ arrival direction coordinatesNumber of hit PMTs $\rightarrow$ energyShape $\rightarrow$ flavour of associated lepton

## Performance: pointing



KM3NeT reconstructs two classes of events:

**Tracks**: predominantly  $\nu_{\mu}CC$ ; angular resolution down to 0.1° at 1 PeV - fly-through **Showers**: predominantly  $\nu_e$  CC or any NC; angular resolution 1° at 1 PeV - contained

#### Tracks and showers are not univocally discriminated depending on their energy



Example: 1 GeV muon leaves a track of a few metres in water. ORCA granularity: 23×9 m

## Water over ice?

Larger scattering length: direct photons  $\rightarrow$  better **pointing** and **particle identification** capability. Noise from radioactive  ${}^{40}K$  decays, natural luminescence in sea easily identifiable.



Figure: Simulation of light from a 10 TeV cascade in ice (left) and water (right).

High-energy neutrinos are expected from collisions yielding particles such as  $\pi^{\pm}$  and  $\mu^{\pm}$ , through pp and  $p\gamma$  scattering, taking place in different environments, steady or with flares



- Neutrino astronomy: backtracking sources
  - As a correlation with underlying catalogue
    - Jets of active galactic nuclei (AGNs)
    - Ø Starburst galaxies, star-forming galaxies
    - S Expanding front of supernova remnants
    - Gamma-ray bursts
    - IceCube HE events
  - As autocorrelation or clusters in space (-time)
- Search for a diffuse excess and measurement of its energy spectrum. Accelerator properties.
- Search for prompt multimessenger coincidences

### Neutrino astronomy in the making: experimental challenge

Astrophysical neutrinos: atmospheric neutrinos: atmospheric muons =  $1:10^4:10^{10}$ 



## Observation of an ultra-high-energy cosmic $\nu$ with KM3NeT



- Recorded with 21-line configuration of KM3NeT/ARCA
- Huge light deposit: 35% of the detector (3672 photomultipliers) triggered; likely multiple tens of PeV
- Consistent with neutrino signal, horizontally crossing the detector traversing continental shelf: not an atmospheric muon





## Observation of an ultra-high-energy cosmic $\nu$ with KM3NeT

Really a unique event or *beginners' luck* when compared with expected yearly rate of atmospheric muons + cosmic neutrinos.



## Observation of an ultra-high-energy cosmic $\nu$ with KM3NeT



## Search for a cosmic component in the $\nu$ energy spectrum

Analysis wishes to identify high-energy excess over the atmospheric  $\nu$ , diffuse over full sky or from the region of the Galactic Plane.



## Search for point sources (all-sky)

Assuming  $\nu$  flux  $\propto E^{-2}$ , KM3NeT/ARCA will reach comparable level to IceCube for the Northern Hemisphere, and improve by almost a factor 2 for the Southern Hemisphere



Figure: Upper limits at 90% C.L. reached with KM3NeT/ARCA [PoS(ICRC2023)1018]. Red circles are  $2.5^{\circ}$  around the candidate source positions.

In hypothesis of hadronic emission, computing  $\nu$  flux from  $\gamma$ -ray flux, several **extended Galactic sources** will be observable in a few years of operation.



Example of  $\gamma$ -ray emission as seen by H.E.S.S.



Expected  $\nu$  fluxes (assumed 100% hadronic scenario)



Sensitivity at 90% CL as a function of the observation time

Flares, transients and other sources with time variability (GRBs, gravitational waves, SN)

Example: flares caused by hadronic emission on top of quiescent state  $\rightarrow$  Prompt alerting system associated with rapid online analysis and pointing directions for telescopes

KM3NeT is getting ready to send and receive alerts in multi-messenger network

SN pipeline already active for real-time analysis
KM3NeT will replace ANTARES in follow up of alerts (ATel, GCN via AMON)





#### Oscillations, mass ordering and related observables

Flavour-related observables require particle identification in detector (e,  $\mu$ ,  $\tau$  lepton?). Ideal region for search is GeV and just above, at the first disappearance peak.



## Evidence for atmospheric neutrino oscillations

Oscillations are seen with significance >  $6\sigma$  in L/E distributions through  $\nu_{\mu}$  disappearance with KM3NeT/ORCA 715 kton-years data set (6+10+11 detector lines).



20 / 35

Best fit:  $\sin^2 \theta_{23} = 0.50^{+0.07}_{-0.07} \Delta m_{31}^2 = -2.09^{+0.17}_{-0.21} \cdot 10^{-3} \text{eV}^2$ . Data display a slight preference for inverted ordering. 1.6 Mton-y of data awaiting.



### Neutrino mass ordering

Matter resonance at 5 GeV affects:  $\nu$  if normal ordering (NO),  $\bar{\nu}$  if inverted ordering (IO).



Figure: Right: oscillation probabilities  $\nu_{\mu} \rightarrow \nu_{\mu}$  and  $\nu_{e} \rightarrow \nu_{\mu}$  for different energies and baselines. The solid (dashed) lines are for NO (IO),  $\nu$  (left) and  $\bar{\nu}$  (right).

Matter resonance at 5 GeV affects:  $\nu$  if normal ordering (NO),  $\bar{\nu}$  if inverted ordering (IO). Sensitivity due to  $\nu$ - $\bar{\nu}$  asymmetry in flux and cross section. Both  $\mu$ - and *e*-channels contribute.



Expected sensitivity: number of expected events with normal/inverted hierarchy  $(N_{IH} - N_{NH})/N_{NH}$ 

and relative  $\chi^2$ . Left: muons; right: electrons. Electron channel is more robust against detector resolution. Neutrino telescopes are versatile instruments! Exploiting two features

- At 1-100 GeV energies: effects that alter oscillations of atmospheric neutrinos, which are measured with high statistics
- At TeV-PeV energies: limits from cosmic neutrinos: effects that scale with energy or accumulate along large distances
  - Non-standard interactions (NSI)
  - Neutrino quantum decoherence
  - Neutrino decay
  - Sterile neutrinos
  - Violation of Lorentz Invariance with effects on oscillations
  - Neutrinos from annihilation of dark matter particles
  - Heavy Neutral Leptons via double cascades at low energy

## Summary

KM3NeT/ARCA - current status: 28 lines, outperforming predecessor ANTARES

- exceptional multi-PeV event recorded ...publication coming out soon.
- **②** able to detect the diffuse flux observed by IceCube with  $5\sigma$  significance in half a year
- Sensitivity to astrophysical sources in the Southern Hemisphere improves by almost 2 orders of magnitude with respect to IceCube

KM3NeT/ORCA - current status: 23 detection line, 1.6 Mton-year recorded data

- Measurement of neutrino oscillations and best fit of oscillation parameters
- Seach for new physics:  $\nu_{\tau}$  normalization factor, NSI, quantum decoherence, violation of Lorentz invariance, neutrino decay, dark matter through indirect detection

## KM3NeT: building roadmap



# Backup

# ANTARES decommissioning



# ANTARES decommissioning



# ANTARES decommissioning



Produced in stellar core collapse at the end of stellar evolution like SN1987A. Real-time search for simoultaneous rate raise in DOMs [PoS(ICRC2021)941]



Figure: Left: SN events expected from 3 simulated progenitors at ORCA and ARCA as a function of different multiplicity values compared with BG rates. Right: Sensitivity as a function of distance.

Neutrino mass eigenstates lose their coherent superposition due to interactions with the environment  $\rightarrow$  oscillation amplitude is suppressed [https://doi.org/10.22323/1.444.1025]



LHC has detected **no new particles**  $\Rightarrow$  interest turns towards possible **new operators** that can be constructed: modifications of the Standard Model that manifest themselves indirectly.

SM effective theory (SMEFT) = SM + dimension 6 operators + ...

All dimension-4 operators that observe Lorenz invariance and gauge symmetry are already contained in the SM. Next possible trial is dimension  $6 \Rightarrow$  this brings in new terms in the Hamiltonian  $\Rightarrow$  new vertex  $\Rightarrow$  modified interaction.

## Non-standard interactions of neutrinos (NSI)

Neutral current forward scattering of neutrinos inside the Earth is modified  $\rightarrow$  Flavour-dependent matter effects alter neutrino oscillations inside the Earth. [https://doi.org/10.22323/1.444.0998]



## Sterile neutrinos

Motivation: (3+1) models with  $\Delta m_{41}^2 \sim 1 \text{ eV}^2$  might explain short baseline anomalies. KM3NeT is sensitive to mixing angles  $\Theta_{24}$  and  $\Theta_{34}$ .

