

Pushing the Limits in Dark Matter Production

Julia Harz

October 15th 2024 17th International Conference on Interconnections between Particle Physics and Cosmology Hyderabad

Cornering the dark matter landscape

Of utmost importance:

- **reliable theory predictions for**
- **accurate interpretation of experimental data**

methodological advancements

"pushing the limits"

C. Arina, CERN Courier, 4 March 2021

Freeze-out of Dark Matter

● **Assumption**: WIMP as DM candidate is due to its interaction rate in thermal equilibrium with the standard model bath

Towards new standards for the DM abundance prediction

● Improving precision of cross sections crucial for DM abundance calculation

$$
\frac{dn}{dt} = -3Hn - \langle \sigma_{\text{eff}} v \rangle (n^2 - n_{\text{eq}}^2)
$$

Towards new standards for the DM abundance prediction

● Improving precision of cross sections crucial for DM abundance calculation

Higher order corrections

● **DM abundance calculation with QCD@NLO within the MSSM**

Towards new standards for the DM abundance prediction

● Improving precision of cross sections crucial for DM abundance calculation

Towards new standards for the DM abundance prediction

● Improving precision of cross sections crucial for DM abundance calculation

Bound state formation and decay

What has been done so far?

• Development of **formalism** to describe boundstate formation (and Sommerfeld effect) for dark matter abundance at zero-T incl. nonequilibrium dynamics Von Harling, Petraki (2014), Petraki, Postma, Wiechers (2015),

Petraki, Postma, de Vries (2016)

● Demonstrating **phenomenological impact** on EW and strongly coupled WIMP scenarios e.g. Asadi, Baumgart, Fitzpatrick, Krupczak, Slatyer (2016),

JH, Petraki (2018), JH, Petraki (2018), JH, Petraki (2019)

Common conclusion: Bound state formation and Sommerfeld effect can significantly affect relic abundance prediction

What is the impact on the interpretation of experimental data?

Impact of SE and BSF on experimental interpretation

For dedicated study of white / grey area, see Bollig, Vogl (2021), Decant, Heisig, Hooper, Lopez-Honorez (2021), Garny, Heisig (2021)

$$
\mathcal{L} \supset g_{\mathrm{DM},ij} X_i^\dagger \bar{\chi} P_R q_j + h.c.
$$

Becker, Copello, JH, Mohan, Sengupta (2022)

Impact of SE and BSF on experimental interpretation

For dedicated study of white / grey area, see Bollig, Vogl (2021), Decant, Heisig, Hooper, Lopez-Honorez (2021), Garny, Heisig (2021)

→ previously excluded parameter space is NOT yet excluded!

Becker, Copello, JH, Mohan, Sengupta (2022)

Potential of bound state formation at colliders

→ BSF@LHC closes gap between prompt and LLP searches

Becker, Copello, JH, Mohan, Sengupta (2022)

What is the impact of BSF on baryogenesis?

Becker, Fridell, JH, Hati (2024)

Thermal effects in DM freeze-out

● Thermal effects **negligible** in comparison to dark matter calculations at **NLO**

Beneke, Dighera, Hryczuk (2014) Beneke, Dighera, Hryczuk (2016)

- thermal effects **subdominant** for **Sommerfeld** effect Kim, Laine (2016)
- temperature effects **relevant** for **bound state formation** for large temperature (melting)
- development of **finite-T treatment of bound state formation** while still in ionization equilibrium

Kim, Laine (2017), Biondini, Laine (2018), Biondini (2018), Covi, Binder, Mukaida (2018)

• **phenomenology** of finite-T treatment of bound state formation while still in ionization equilibrium

Biondini, Vogl (2018), Biondini, Vogl (2019)

● **Out-of-equilibrium description** *from first principles* **at NLO (including bath particle scattering and emission) for a** *massless* **mediator via density matrix formalism**

→ first consistent thermal description of bound state formation at NLO beyond ionisation equilibrium

→ proof of consistent cancellation of all IR (and UV) divergencies

Binder, Blobel, JH, Mukaida (2020)

For impact of bath particle scattering with massive mediator, see Binder, Mukaida, Petraki (2019)

Binder, Blobel, JH, Mukaida (2020)

Binder, Blobel, JH, Mukaida (2020)

Take home messages for the WIMP

- **Sommerfeld effect and BSF can have significant impact on DM production**
- **Thermal effects subdominant wrt NLO corrections and Sommerfeld effect**
- **Thermal effects for BSF moderately relevant for light mediators**

C. Arina, CERN Courier, 4 March 2021

The FIMP – feebly interacting massive particle

The FIMP

- **Assumption**: FIMPs feature very small interaction rates with SM particles and are hence not in thermal equilibrium with the standard model bath
- FIMPs as **DM** produced via decay of parent particle

 $y_{\text{DM}} P \chi f_{\text{SM}}$

Feeble interaction leads to interesting long lived particle (LLP) signatures at colliders!

credit: Heather Russell, McGill University, 2017

The FIMP – freeze-in of dark matter

Freeze-in: Linking the early Universe with physics in the lab

FIMPs / freeze-in feature interesting phenomenology:

- Testable via LLP searches at colliders
- Consistent cosmological history (inflationary model, reheating, DM production via freeze-in) leads to constraints from cosmological data
	- → what are **uncertainties** in the prediction?
	- → how does the **thermal plasma** affect freeze-in mechanism?

$$
z_{\rm FI} = \frac{m_F}{T} \approx 5
$$

Becker, Copello, JH, Lang, Xu (2023)

Relevance of thermal masses for freeze-in via scattering

● **Scattering with the thermal plasma**

Credits: E. Copello

→ divergence for massless particle in the t-channel propagator usually regularized with thermal mass

Thermal corrections to freeze-in in the literature

Different treatments can be found

- Boltzmann approach with decays in vacuum only
- Boltzmann approach with decays only including thermal masses
- Boltzmann approach with decays and scattering including thermal masses
- Non-equilibrium approach with tree-level propagators
- Non-equilibrium approach with HTL approximated propagators
- **→ How do different treatments in the literature compare?**

→ What is phenomenologically the most recommended method?

For comparing **thermal masses and quantum statistics** see Bringmann, Heeba, Kahlhoefer, Vangsnes (2021) For production rate of scalar DM with real time formalism and **HTL approximation**, see Drewes, Kang (2015) For fermionic DM with imaginary time formalism including **scattering** and **partially resummed propagators for decays** incl. **LPM effect**, see Biondini, Ghiglieri (2020)

DM freeze-in in the Closed Time Path (CTP) formalism

GOAL: Calculate freeze-in within non-equilibrium framework (closed time path formalism) with 1PIresummed propagators at LO in the loop expansion of the 2PI effective action and compare with other approaches

$$
\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{2} (\partial_{\mu} s)^2 - \frac{1}{2} m_s^2 s^2 - V(s, H) + \bar{F} \left(i \rlap{\,/}D - m_F\right) F - \left[y_{\text{DM}} \bar{F} f s + h.c.\right]
$$

DM freeze-in in the Closed Time Path (CTP) formalism

GOAL: Calculate freeze-in within non-equilibrium framework (**closed time path formalism**) with **1PIresummed propagators** at **LO in the loop expansion of the 2PI effective action** and compare with other approaches

$$
\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_\mu s)^2 - \frac{1}{2} m_s^2 s^2 - V(s, H) + \bar{F} \left(i \rlap{\,/}D - m_F\right) F - \left[y_{\rm DM} \bar{F} f s + h.c.\right]
$$

The CTP formalism I

- **S-matrix formalism (in-out) in vacuum for transition amplitudes between well-defined initial and final states**
- **CTP formalism (in-in) for time-dependent expectation values, e.g. the evolution of the statistical ensemble of a primordial plasma with continuously interacting fields**

$$
iG^{ab}(x,y) = \langle T_C \phi(x^a)\bar{\phi}(y^b) \rangle
$$

\n
$$
iG^< \equiv iG^{+-}
$$

\n
$$
iG^< \equiv iG^{+-}
$$

\n
$$
iG^> \equiv iG^{-+}
$$

• Number density
$$
n_s = \int \frac{d^3p}{(2\pi)^3} f_s(\vec{p}) = \int \frac{d^3p}{(2\pi)^3} \int_0^\infty \frac{p^0}{\pi} p^0 i \Delta_s^<(p)
$$

The CTP formalism II

Derive evolution equation for the scalar self energy based on Schwinger-Dyson equations

$$
\partial_t f_s(t, |\vec{p}|) = \int_0^\infty \frac{p^0}{\pi} \frac{1}{2} \left[\left(i \Pi_s^{\langle s \rangle} \left(i \Delta_s^{\rangle} \right) - \left(i \Pi_s^{\rangle} \right) \left(i \Delta_s^{\langle s \rangle} \right) \right]
$$

$$
i \Delta_0^{ab^{-1}}(x, y) = i \Delta^{ab^{-1}}(x, y) + i \Pi^{ab}(x, y)
$$

We perform our calculation at LO in the loop expansion of the 2PI effective action

and include the fully 1PI-resummed propagators for fermions

Becker, Copello, JH, Tamarit (2023)

The CTP formalism II

Derive evolution equation for the scalar self energy based on Schwinger-Dyson equations

$$
\partial_t f_s(t, |\vec{p}|) = \int_0^\infty \frac{p^0}{\pi} \frac{1}{2} \left[\left(i \Pi_s^{\langle s \rangle} \right) \left(i \Delta_s^{\rangle} \right) - \left(i \Pi_s^{\rangle} \right) \left(i \Delta_s^{\langle s \rangle} \right) \right]
$$

$$
i \Delta_0^{ab^{-1}}(x, y) = i \Delta^{ab^{-1}}(x, y) + i \Pi^{ab}(x, y)
$$

 \blacktriangle

We perform our calculation at LO in the loop expansion of the 2PI effective action

and include the fully 1PI-resummed propagators for fermions

Becker, Copello, JH, Tamarit (2023)

The CTP formalism III

The phenomenological interpretation

The CTP formalism IV

Finally, we obtain an evolution equation for the number density of the scalar particle

$$
\dot{n}_s + 3Hn_s = \gamma_{\rm DM} \equiv \frac{1}{2\pi^2} \int d|\vec{p}| \frac{|\vec{p}|^2}{\omega_p} \Pi_s^{\mathcal{A}}(\omega_p, |\vec{p}|) f_{-}(\omega_p)
$$

With the reaction density

$$
\gamma_{\rm DM} = \frac{y_{\rm DM}^2}{4\pi^5} \int d|\vec{p}| \, dk^0 \, d|\vec{k}| \, d\cos\theta \, \frac{|\vec{k}|^2 |\vec{p}|^2}{\omega_p} tr \left\{ P_L \mathcal{G}_F^{\mathcal{A}}(k) P_R \mathcal{G}_f^{\mathcal{A}}(k-p) \right\} f_-(\omega_p) \left[1 - f_+(k^0) - f_+(\omega_p - k^0) \right]
$$

And the spectral propagators

$$
\mathcal{G}_F^{\mathcal{A}}(k) = \left(k - \mathcal{L}_F^{\mathcal{H}}(k) + m_F \right) \frac{\Gamma_F(k)}{\Omega_F^2(k) + \Gamma_F^2(k)} - \mathcal{L}_F^{\mathcal{A}}(k) \frac{\Omega_F(k)}{\Omega_F^2(k) + \Gamma_F^2(k)}
$$

Becker, Copello, JH, Tamarit (2023)

Comparing methods – spectral propagator

- $\oint^{\cal A} \sim \delta(k^2-m_0^2)$ **In vacuum** ●
- **With thermal masses**

$$
\not\!\delta^{\cal A} \sim \, \delta(k^2-m_{\rm th}^2)
$$

● **1PI resummed**

$$
\mathcal{G}_F^{\mathcal{A}}(k) = \left(k - \mathcal{L}_F^{\mathcal{H}}(k) + m_F \right) \frac{\Gamma_F(k)}{\Omega_F^2(k) + \Gamma_F^2(k)} - \mathcal{L}_F^{\mathcal{A}}(k) \frac{\Omega_F(k)}{\Omega_F^2(k) + \Gamma_F^2(k)}
$$

→ thermal width broadens the spectrum

Compared to vacuum decay only

Decays start to dominate for large z

$$
z>\sqrt{G}\frac{1-\delta}{2\delta-\delta^2}
$$

- Ω_{DM} strongly **underestimated** for small mass splittings (missing scatterings)
- Ω_{DM} partially **overestimated** for larger mass splittings (quantum statistics)

Becker, Copello, JH, Tamarit (2023)

Compared to decays with thermal masses

Decays start to dominate for large z

$$
z>\sqrt{G}\frac{1-\delta}{2\delta-\delta^2}
$$

- Ω_{DM} strongly **underestimated** for small mass splittings (missing scatterings)
- Ω_{DM} partially **overestimated** for larger mass splittings (quantum statistics)
- **Thermal masses increase the deviation**

Becker, Copello, JH, Tamarit (2023)

Compared to decays and scattering with thermal masses

- Ω_{DM} still slightly **underestimated** for small mass splittings
- Ω_{DM} strongly **overestimated** for large mass splittings (e.g. larger masses, ...)
- **When including Fermi-Dirac / Bose-Einstein statistics in semi-classical BEQ, deviation reduced by approx. 50%**

Compared to HTL approximation

- Ω_{DM} strongly overestimated for small mass splittings (HTL overestimates scattering)
- Ω_{DM} **slightly overestimated** for large mass splittings (vanishing thermal width)
- Larger deviations for larger G
- **significant corrections on Ω_{ρΜ} dependent on mass splitting and gauge coupling G**

Going beyond LO in expansion of 2PI effective action

● **How important can NLO contributions to 2PI effective action be?**

→ **Power counting** for soft gauge bosons for scalar self energy (for method see e.g. Arnold, Moore, Yaffe, 2001)

Going beyond LO in expansion of 2PI effective action

● **LPM resummation expected to be relevant also for scalar self energy**

Previously studied only for fermion self energies in the context of

- \rightarrow leptogenesis (e.g. Besak, Bödeker)
- \rightarrow Fermionic FIMPs (Biondini, Ghiglieri)
- **Use of recursion relation and integrating out of soft gauge bosons** (Besak 2010)

 $\gamma_{\rm DM} = (\gamma_{\rm DM}^{\rm LPM} - \gamma_{\rm DM}^{\rm LPM\,Born}) \kappa(m_F) + \gamma_{\rm DM}^{\rm 1PI-resummed}$

→ moderate corrections to fully 1PI-resummed result (max. 10%)

JH, Fernandez Lozano, in preparation (2024)

Pushing the Limits in Dark Matter Production Julia Harz

 \mathcal{L}

Another application: Ly-α limits on freeze-in of ALP DM

● **Photophilic ALP DM freezes-in via scattering processes**

● **Limit from Lyman-α on free-streaming length as warm DM**

$$
\lambda_{\rm fs} \propto \frac{\langle p \rangle / T}{m_a} \qquad \qquad \langle p \rangle = \frac{\int dp \, p^3 f_a(p)}{\int dp \, p^2 f_a(p)} \qquad \qquad \langle p \rangle_{\rm cut} = 3.24
$$

T-channel divergence in $f \vee \rightarrow f$ a diagram

Introduce cut-of scale k* below which HTL resummed propagator is used $gT \ll k_{\star} \ll T$, only valid for $p_a > gT$ Bolz, Brandenburg, Buchmuller (2001)

→ Momentum distribution functions turn negative for soft axion momenta!

Baumholzer, Brdar, Morgante (2021)

Another application: Ly-α limits on freeze-in of ALP DM

● **Calculate distribution functions using CTP including fully 1PI-resummed propagators**

 $\mathbf{w} = \mathbf{w} + \mathbf{w}$

- **HTL solves already negative rates**
- **1PI-resummed propagators show previously neglected TT contribution for low momenta**
- **Impacts directly Lyman-α constraints**

$$
\lambda_{\text{fs}} \propto \frac{\langle p \rangle / T}{m_a}
$$
\n $\langle p \rangle_{\text{cut}} = 3.24$ \n $\langle p \rangle_{\text{HTL}} = 3.19$ \n $\langle p \rangle_{\text{Full}} = 3.08$

Becker, JH, Morgante, Puchades-Ibanez, Schwaller (in preparation)

For different approach for non-abelian theories, see Bouzoud and Ghiglieri (2024)

Conclusions

- **Dark matter still one of the biggest puzzles of modern (astro)particle physics**
- **Cutting-edge methods needed for accurate theory predictions and correct experimental interpretation**

WIMP freeze-out

- **Sommerfeld effect and BSF can have significant impact on DM production**
- **Thermal effects subdominant wrt NLO corrections and Sommerfeld effect**
- **Thermal effects for BSF moderately relevant for light mediators**

FIMP freeze-in

● **Thermal effects can have sizeable effect depending on gauge interactions with the thermal plasma and mass difference of DM with parent particle**

Let's push the limits in the search of dark matter!

Thank you for your attention!

[NASA,](http://www.nasa.gov/) [ESA](http://www.spacetelescope.org/), and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team ([STScI](http://www.stsci.edu/))

NLO corrections to the Relic Abundance

Full NLO calculation historically mainly done for the MSSM

- **SloopS NLO EW for MSSM** Boudjema et al. (2006), Baro et al. (2008, 2010), Boudjema (2011), Chatterjee et al. (2012), Boudjema et al. (2014)
- $DM@N$ ● **DM@NLO – NLO QCD for MSSM** Herrmann et al. (2009), JH et al. (2013, Herrmann et al. (2014), JH et al. (2015, 2016, 2019, 2023)
- **Sommerfeld effect in MSSM** Drees et al. (2013), Beneke et al. (2013, 2015), JH et al. (2015), Beneke et al. (2016), Schmiemann et al. (2019), Branahl et al. (2019)
- **Sommerfeld effect in other models** Chowdhury Nasri (2017), Baldes, Petraki (2017), El Hedri, Kaminska, Vries (2017), JH, Petraki (2018), Biondini (2018), and by now by many, many more...

Impact of bound state formation on the relic abundance

→ **How correct without thermal effects and bath particle scattering?** *JH, Petraki (2018)*

Impact on minimal dark matter coupling strength

Identify lower bound on g_{DM} in order not to overproduce DM

- **Non-perturbative effects result in corrections on minimal g**_{DM}
- **Depending on parameter space: positive or negative correction**

Becker, Copello, JH, Mohan, Sengupta (2022)

Potential of bound state formation at colliders

$$
\sigma(pp\to {\mathcal B}(XX^\dagger)) = \frac{\pi^2}{8m_{\mathcal B}^3} \mathcal P_{gg} \left(\frac{m_{\mathcal B}}{13~{\rm TeV}} \right) \varGamma({\mathcal B}(XX^\dagger) \to gg)
$$

- Resonant production of bound state and subsequent decay (e.g. into photons)
- Dedicated searches, see e.g. *ATLAS coll. Phys. Lett. B 775 (2017) 105*
- $\;\;$ Efficient for large range of ${\sf g}_{{\sf DM}}$, as long as $\;\; \Gamma_{X} < E_{B} \;\;$ (g $_{{\sf DM}}$ < g $_{{\sf s}}$, when bound states are efficiently produced)

Future prospects

- **HSPC not strict exclusion limit (BSF@LHC is!)**
- **Highly testable: parameter space can be almost entirely probed**
- **BSF effects enlarge parameter range that still needs to be tested**

Becker, Copello, JH, Mohan, Sengupta (2022)

Future prospects for bound states at colliders

BSF@LHC has potential to unambiguously close parameter space for small DM masses and mass splittings

Becker, Copello, JH, Mohan, Sengupta (2022)

Impact of thermal corrections to dark matter annihilation

- Cancellation of soft and collinear divergences at individual CTP self energy diagram
- Helicity suppression for Majorana fermion s-wave annihilation not lifted by thermal corrections
- Leading correction of order $\mathcal{O}\left(\frac{1}{m^4}\right)$ with T << m_X around freeze-out

smaller than zero-temperature NLO corrections \rightarrow can therefore be neglected

• For co-annihilation expected at $\mathcal{O}\left(\frac{T^2}{m_\infty^2}\right)$

→ Zero-temperature calculation sufficient for dark matter (co)-annihilation

Beneke, Dighera, Hryczuk (2016) Beneke, Dighera, Hryczuk (2014)

Sommerfeld effect in the thermal plasma

Different thermal effects

• Thermal width $\Gamma\sim \alpha^2 T^2/M$ scattering states $\Gamma \sim T^3/M^2$ bound states

• Thermal masses $m_\text{th} \sim \alpha^{1/2} T$ Debye mass

 $M_{\rm th} \sim -\alpha^{3/2} T$

Debye screening / Salpeter correction

Sommerfeld effect with $v \sim (T/M)^{1/2}$ and $v \sim \alpha$ follows $T \sim \alpha^2 M$

momenta large compared to Debye mass $Mv \sim (MT)^{1/2} \gg m_{\rm th} \sim \alpha^{1/2} T$ Kin. energy large compared to thermal width $T \gg \Gamma \sim \alpha^2 T^2/M$

→ thermal effects subdominant for Sommerfeld effect

Kim, Laine (2016)

Bound state formation in the thermal plasma

Different thermal effects

• Thermal width $\Gamma \sim \alpha^2 T^2/M$ scattering states $\Gamma \sim T^3/M^2$ bound states

• Thermal masses $m_\text{th} \sim \alpha^{1/2} T$ Debye mass

 $M_{\rm th} \sim -\alpha^{3/2} T$

Salpeter correction

Bound states melt when

$$
\varGamma \sim T^3/M^2 \ge \varDelta E \sim \alpha^2 M
$$

 $T > \alpha M$

→ BUT: bound states relevant when out of ionisation equlibrium and low(er) T

Kim, Laine (2016)

● **Out-of-equilibrium description** *from first principles* **at NLO (including bath particle scattering and emission) for a** *massless* **mediator via density matrix formalism**

$$
\dot{n}_{\chi}+3Hn_{\chi}=-\sum_{\mathcal{B}}\langle\sigma_{\mathcal{B}}^{\rm bsf}v_{\rm rel}\rangle\left[n_{\chi}n_{\bar{\chi}}-n_{\mathcal{B}}\frac{n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq}}{n_{\mathcal{B}}^{\rm eq}}\right]-\langle\sigma^{\rm an}v_{\rm rel}\rangle\left[n_{\chi}n_{\bar{\chi}}-n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq}\right]
$$

$$
\sigma_{\mathcal{B}}^{\rm bsf} v_{\rm rel} \equiv \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \left[1 + f_{\gamma}^{\rm eq}(\Delta E)\right] D_{\mu\nu}^{\rho}(\Delta E, \mathbf{p}) \sum_{\rm Spin} \mathcal{T}_{\mathbf{k}, \mathcal{B}}^{\mu}(\Delta E, \mathbf{p}) \mathcal{T}_{\mathbf{k}, \mathcal{B}}^{\nu\star}(\Delta E, \mathbf{p})
$$

$$
D_{\mu\nu}^{\rho} = 2\Im\left[iD_{\mu\nu}^{R}\right] = 2\Im\left[D_{\mu\nu}^{R,0} + D_{\mu\alpha}^{R,0}\Pi_{R}^{\alpha\beta}D_{\beta\nu}^{R,0} + \ldots\right]
$$

- **→ first consistent thermal description of bound state formation at NLO beyond ionisation equilibrium for DM freeze-out**
- **→ proof of consistent cancellation of all IR (and UV) divergencies**

Binder, Blobel, JH, Mukaida (2020)

Comparison bath particle scattering & emission of mediator

● **Effective out-of-equilibrium description including bath particle scattering and emission for** *massive* **mediator**

→ bath particle scattering can play relevant role

Binder, Mukaida, Petraki (2019)

Implications on the decay length

$$
\frac{\Omega_{\rm DM}h^2}{0.12} \simeq \left(\frac{1.5 \,\mathrm{m}}{c\tau}\right) \left(\frac{106.75}{g_s}\right)^{3/2} \left(\frac{m_{\rm DM}}{100 \,\mathrm{keV}}\right) \left(\frac{200 \,\mathrm{GeV}}{m_P}\right)^2
$$

$$
\times \left\{\begin{array}{c} \frac{2k+4}{3} \left(\frac{T_{\rm rh}}{m_P}\right)^{4k-1} \mathcal{I}_{\rm rh,b} + \mathcal{I}_{\rm RD}^0 \quad \mathrm{in} \,\, \mathrm{BR} \\ \frac{2k+4}{3k-3} \left(\frac{T_{\rm rh}}{m_P}\right)^{\frac{9-k}{k-1}} \mathcal{I}_{\rm rh,f} + \mathcal{I}_{\rm RD}^0 \quad \mathrm{in} \,\, \mathrm{FR} \end{array}\right. ,
$$

Becker, Copello, JH, Lang, Xu (2023)

Constraints from LLP searches at the LHC

Muonphilic Majorana DM model

→ Interpretation of exclusion limits dependent on cosmological history, e.g. reheating temperature!

Becker, Copello, JH, Lang, Xu (2023)

Linking to inflationary models

$$
V(\varPhi)=\lambda\frac{|\varPhi|^k}{M^{k-4}}
$$

Reheating potential can be obtained (Φ<MPl), e.g. from

E-model (Starobinsky inflation for α=1):

$$
V(\Phi) = \Lambda^4 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}} \frac{\Phi}{M_{\text{Pl}}}} \right)^{2n}
$$

$$
V(\Phi) \simeq \Lambda^4 \left(\frac{2}{3\alpha}\right)^n \left(\frac{\Phi}{M_{\rm Pl}}\right)^{2n} \equiv \frac{\lambda}{M_{\rm Pl}^{k-4}} \Phi^k
$$

Constraints on the reheating temperature from inflation

→ **spectral index sets lower limit on T_{rh}** Becker, Copello, JH, Lang, Xu (2023)

Linking the early Universe with physics in the lab

Muonphilic Majorana DM model

Semi-classical Boltzmann approach with thermal masses

● **Freeze-in via scattering**

H H S S

$$
\mathcal{L}=\frac{1}{2}\partial_\mu S\partial^\mu S+\frac{1}{2}\mu_S^2 S^2+\frac{1}{2}\lambda_{hs}S^2|H|^2+\frac{1}{4}\lambda_s S^4
$$

- Including thermal masses
- Including thermal effects on Higgs potential
- Full quantum statistics

Bringmann, Heeba, Kahlhoefer, Vangsnes (2021)

Impact of thermal plasma in ultrarelativistic regime

→ freeze-in highly dependent on regime when parent particle becomes non-relativistic

Comparing methods – spectral propagator III

● **HTL approximation**

$$
\varGamma_{F}^{\text{HTL}} \propto \theta\left(-k^{2}\right) \frac{G}{\pi} 8|\vec{k}|T^{2}
$$

- Thermal width non-zero only for space-like momenta $k \rightarrow$ continuum ("Landau damping")
- \cdot For time-like momenta k, vanishing thermal width and recovery of particle-like dispersion relation

$$
\mathcal{B}_{F/f}^{\mathcal{A}}(k) = \pi \operatorname{sign}(k^0) \left(k - m_{F/f} - \mathcal{L}_{F/f}^{\mathcal{H}, \mathrm{HTL}}(k) \right) \delta \left(\left[k - \mathcal{L}_{F/f}^{\mathcal{H}, \mathrm{HTL}}(k) \right]^2 - m_{F/f}^2 \right)
$$

Becker, Copello, JH, Tamarit (2023)

Comparing methods – spectral propagator III

● **HTL approximation**

$$
\varGamma_{F}^{\text{HTL}}\propto \theta\left(-k^{2}\right)\frac{G}{\pi}8|\vec{k}|T^{2}
$$

- Thermal width non-zero only for space-like momenta $k \rightarrow$ continuum ("Landau damping")
- For time-like momenta k, vanishing thermal width and recovery of particle-like dispersion relation

$$
\mathcal{B}_{F/f}^{\mathcal{A}}(k) = \pi \operatorname{sign}(k^0) \left(k - m_{F/f} - \mathcal{L}_{F/f}^{\mathcal{H}, \mathrm{HTL}}(k) \right) \delta \left(\left[k - \mathcal{L}_{F/f}^{\mathcal{H}, \mathrm{HTL}}(k) \right]^2 - m_{F/f}^2 \right)
$$

Becker, Copello, JH, Tamarit (2023)

Comparing methods – spectral propagator

- **Tree-level CTP approximation**
	- Thermal widths identically zero
	- Dispersion relation with momentumindependent thermal masses and vacuum mass

 $\mathcal{B}_F^{\mathcal{A}}(k) = \pi \delta(k^2 - m_F^2)(k + m_F) \operatorname{sign}(k^0)$

• Corresponds to DM decay from on-shell F including in-vacuum masses and thermal masses by accounting for the proper quantum statistics

$$
\Pi_s^{\mathcal{A}}(p) = \frac{y_{\rm DM}^2}{16\pi |\vec{p}|} \left| p^2 - m_F^2 - m_f^2 \right| \int_{\mathcal{B}} k_0 \left[1 - f_+(k_0) - f_+(p_0 - k_0) \right]
$$

Becker, Copello, JH, Tamarit (2023)

- **Scatterings** dominate for small z (plateau)
- **Decays** start to dominate for large z

 $z > \sqrt{G} \frac{m_{\rm DM} m_F}{m_F^2 - m_{\rm DM}^2}$

• Relative mass difference δ sets **height** of the **decay peak**

- **Scatterings** dominate for small z (plateau)
- **Decays** start to dominate for large z

 $z > \sqrt{G} \frac{m_{\rm DM} m_F}{m_F^2 - m_{\rm DM}^2}$

- Relative mass difference δ sets **height** of the **decay peak**
- Gauge coupling G sets the **height** of the **plateau**

Becker, Copello, JH, Tamarit (2023)

- **Scatterings** dominate for small z (plateau)
- **Decays** start to dominate for large z

 $z > \sqrt{G} \frac{m_{\rm DM} m_F}{m_F^2 - m_{\rm DM}^2}$

- Relative mass difference δ sets **height** of the **decay peak**
- Gauge coupling G sets the **height** of the **plateau**
- For smaller , decays become less relevant due to **phase space suppression**

$$
z>\sqrt{G}\frac{1-\delta}{2\delta-\delta^2}
$$

BEQ with decay only (vacuum masses)

- Heavily **underestimates** production for **small z** (missing scatterings)
- **Overestimates** production for **large z** due to missing quantum statistics

BEQ with decay and scatterings (incl. thermal masses)

- General differences due to missing quantum statistics
- Decay **overestimated** due to higher thermal mass, earlier closure of the decay window, larger and longer contribution from BEQ than for 1PI resummed

CTP with tree-level propagators

- Accounts for **decays with thermal masses** and proper **quantum statistics** while neglecting scatterings
- Comparable with **HTL for decays**

CTP with HTL approximation

- For **small z**, HTL overestimates, as dominated by **ST**-contributions that lack suppression by vacuum mass for large space-like momenta
- Decay contribution kicks in later, as HTL-propagator is delta function for time-like momenta in contrast to 1PIresummed one
- For **large z**, **HTL overestimates** decays as finite width in 1PIresummed propagators smear out quasi-particle solution

Becker, Copello, JH, Tamarit (2023)

