

PPC-2024@IITH

Neutrino astronomy with dark matter - neutrino interactions

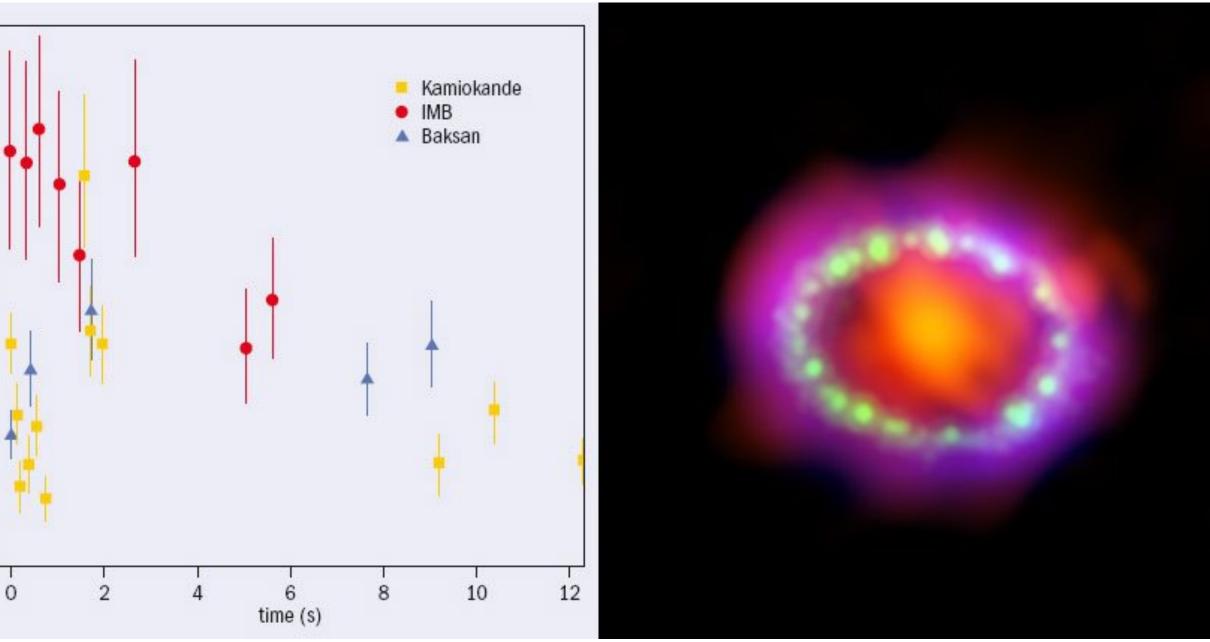
Subhendu Rakshit IIT Indore

Ve

Neutrino astronomy – Earlier Successes



Neutrino-graph of the Sun



Credit: Hubble

Neutrinos received from supernova 1987A

S. Rakshit @ PPC-2024

40

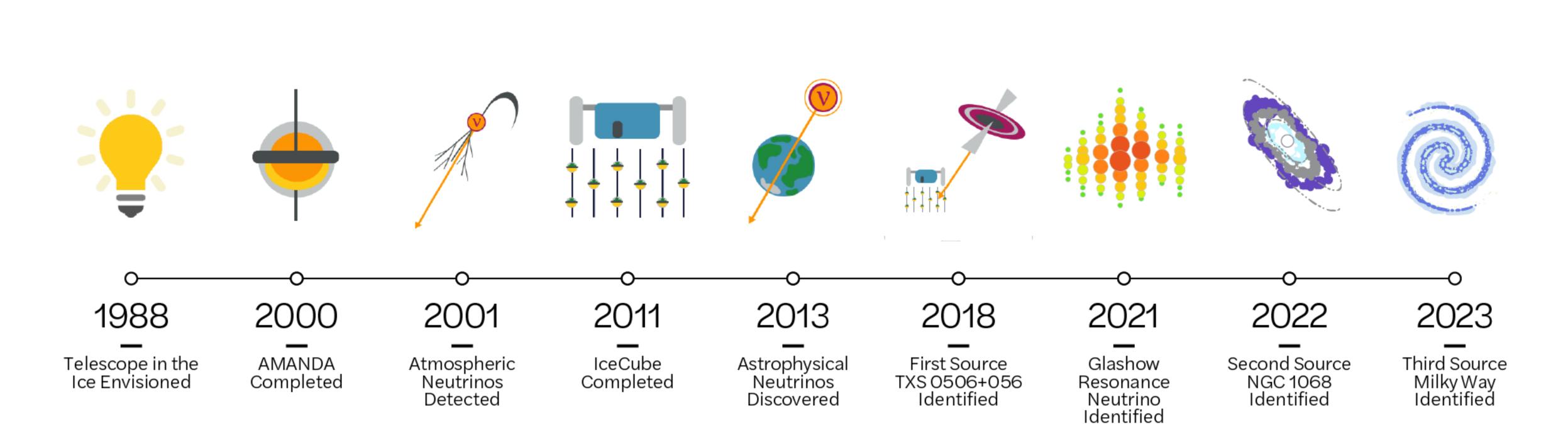
30

10

0 -

(VaM) (MeV)

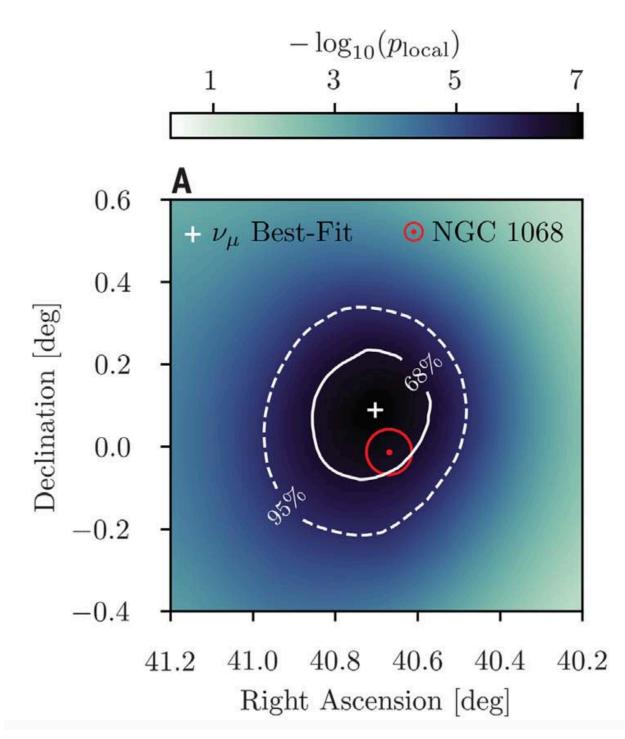
A History of Neutrino Astronomy in Antarctica



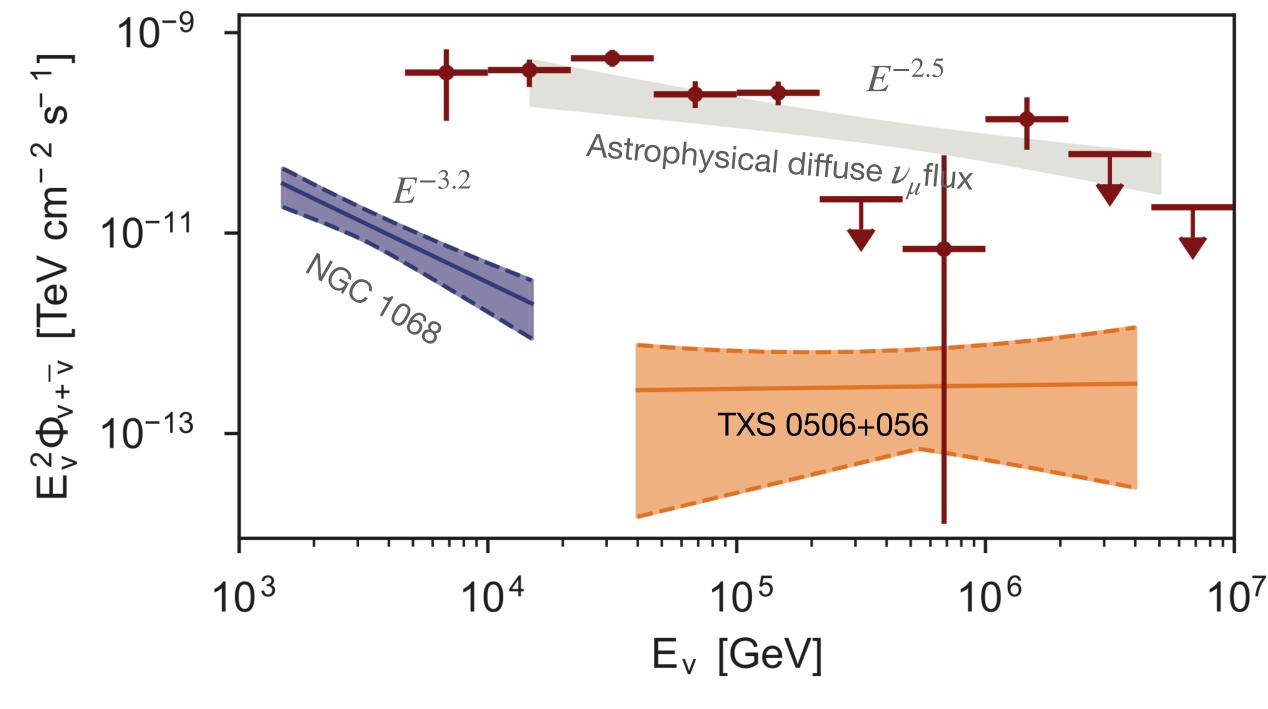
The IceCube Collaboration found an excess of 79^{+22}_{-20} neutrinos over the background associated with NGC 1068 at a statistical significance of 4.2σ .

Radio-quiet AGNs, including NGC 1068, and other lowluminosity AGNs, which are more abundant than blazars and radio-loud AGNs, might help explain the amount of all cosmic neutrinos observed by the IceCube Neutrino Observatory

NGC 1068 is a radio quite AGN at a distance of 46 million light-years. Neutrinos can escape.



IceCube Collaboration, Science **378** (2022) 538

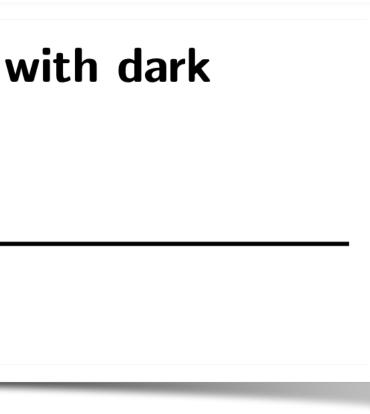


Interactions of astrophysical neutrinos with dark matter: a model building perspective

Sujata Pandey, Siddhartha Karmakar and Subhendu Rakshit

Astronomy with energy dependent flavour ratios of extragalactic neutrinos

Siddhartha Karmakar, Sujata Pandey and Subhendu Rakshit



JHEP01 (2019) 095

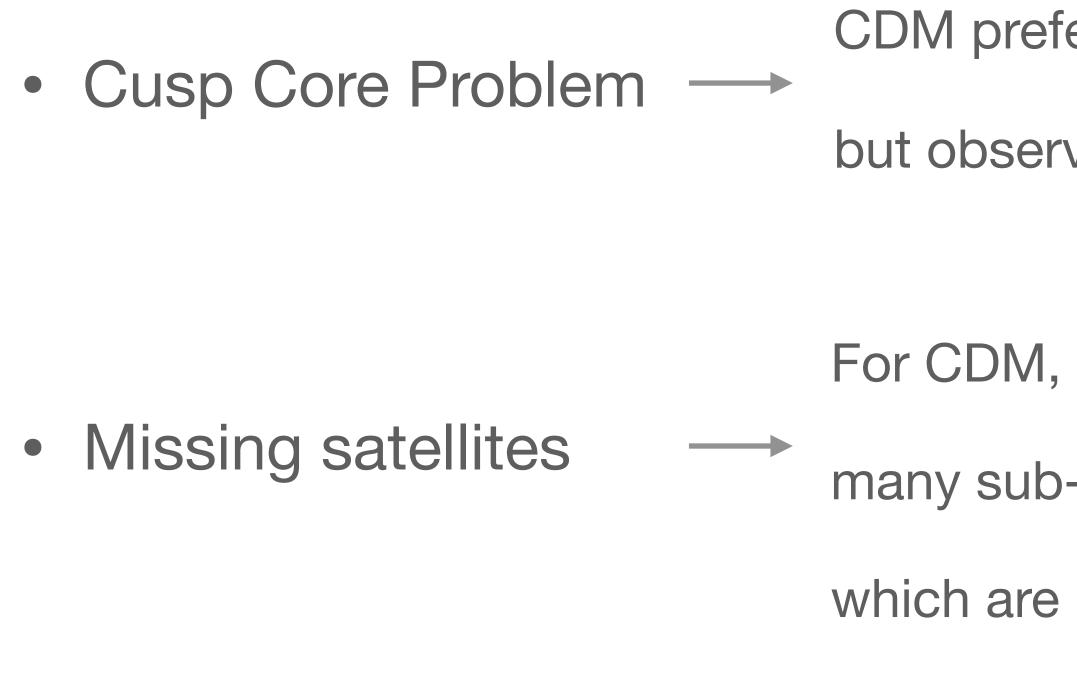
An encyclopedia of neutrino interactions with ultralight scalar DM

JHEP10 (2021) 004

 ν -DM interactions lead to energy dependent flavour ratios at neutrino telescopes

Motivation for ultralight DM

 Λ CDM fits cosmological observations very well. The CDM paradigm emerges from the large scale observations, and describes structure formation through gravitational clustering.



CDM prefers cusp $\rho(r) \propto 1/r$,

but observations indicate core

For CDM, MilkyWay size galaxies DM halo should have

many sub-halos, leading to too many satellite galaxies,

which are not observed

Motivation for ultralight DM

de Brogli wavelength of DM ~ size of a galax

 $v \sim 22$

Small masses of bosons leads to the formation of BE condensate on galactic scales. Wave nature of DM \implies non-CDM behaviour at galactic scale. But CDM-like behaviour on larger scales retaining the success of CDM. At small scales, the quantum pressure forbids over-production of sub-halos.

Review: E. Ferreira, Astron.Astrophys.Rev. 29 (2021) 7

$$\lambda = \frac{h}{m_{\rm DM}v} \sim 1 \,\rm kpc$$

$$20 \,\rm km/s \implies m_{\rm DM} \sim 10^{-22} \,\rm eV/c^2$$

Ultralight/Fuzzy DM solitonic core in presence of a SMBH

FDM halos are comprised of a central core that is a stationary, minimum-energy solution of the Schrödinger-Poisson equation, sometimes called a "soliton," surrounded by an envelope that resembles a CDM halo.

$$\rho(r) = \rho_0 \exp(-r/a)$$

$$a = \frac{1}{GM_{\rm BH}m_{\rm DM}^2} \qquad \rho_0 = \frac{M_{\rm sol}}{8\pi a^3}$$

The observations of Lyman- α forest, etc. exclude DM masses lower than $m_{\rm DM} \lesssim 10^{-22}$ eV. Ultralight scalar DM of masses $m_{\rm DM} > 10^{-22}$ eV are viable in the presence of DM self-interactions.

Hui, Ostriker, Tremaine, Witten, PRD95(2017)043541

E.Y. Davies and P. Mocz, /INRAS 492 (2020) 5721

Feel for numbers

Neutrinos can be produced in the corona around $\sim 10 - 40R_s$, where $R_s = 2GM_{BH}$

For
$$M_{\rm BH} \sim 10^5 M_{\odot}$$
, $R_s \sim 5 \times 10^{-8}$ pc,

neutrino emission takes place around 10^{-7} pc from the centre, where DM density is uniform.

With $m_{\rm DM} \sim 3 \times 10^{-17}$ eV, $a \sim 10^{-6}$ pc, where the core \implies meets its edge.

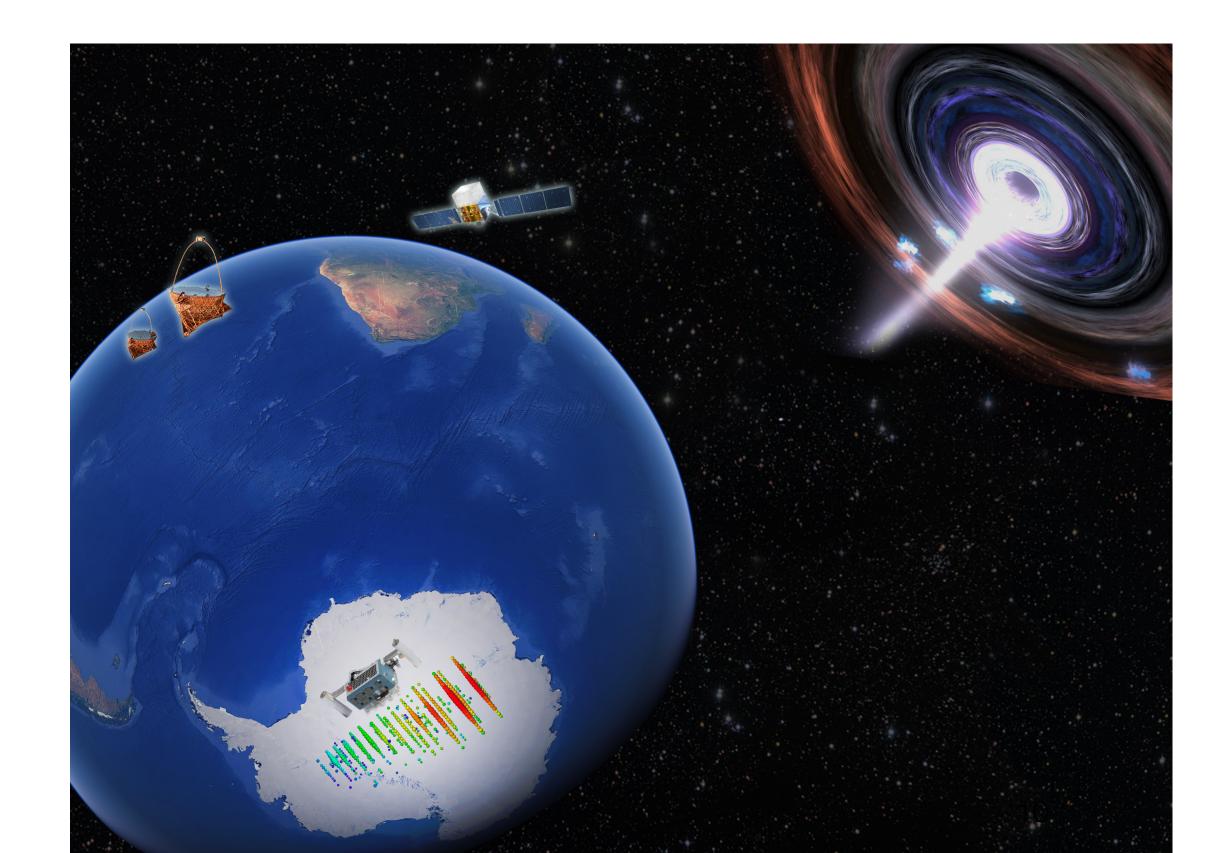
Sharp fall in DM density can induce non-adiabaticity

> Enables us to do neutrino astronomy by determining the shape of the core

Propagation of neutrinos from astrophysical sources

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sum_{k} |U_{\alpha k}|^{2} |U_{\beta k}|^{2} + 2 \operatorname{Re} \sum_{k>j} U_{\alpha k}^{\star} U_{\beta k}^{\dagger}$$
$$\overline{P}_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{k} |U_{\alpha k}|^{2} |U_{\beta k}|^{2} - \operatorname{For as the oscillation}$$

$$\nu_{\alpha} \rightarrow \nu_{\beta} - \sum_{k} |O_{\alpha k}| |O_{\beta k}|$$
 the oscillator average average in the second se



 $U_{\beta k} U_{\alpha j} U_{\beta j}^{\star} \exp\left(-i \frac{\Delta m_{k j}^2 L}{2E}\right)$

strophysical distance scillatory term gets aged out

$$\nu_{e} : \nu_{\mu} : \nu_{\tau} = 1 : 2 : 0 \quad \text{Source}$$

$$\begin{array}{c} \text{Neutrinos} \\ \text{oscillate} \end{array} \quad f_{\beta}^{D} = P_{\alpha\beta}f_{\alpha}^{S}$$

$$\nu_{e} : \nu_{\mu} : \nu_{\tau} = 1 : 1 : 1 \quad \text{IceCube} \end{array}$$

Energy independent in the standard scenario

$P_{\alpha\beta} = |U_{\beta i}^{D}|^{2} |U_{\alpha i}^{S}|^{2} - P_{i j}^{c} (|U_{\beta i}^{D}|^{2} - |U_{\beta j}^{D}|^{2}) (|U_{\alpha i}^{S}|^{2} - |U_{\alpha j}^{S}|^{2})$ $-P_{ik}^{c}P_{kj}^{c}(|U_{\beta k}^{D}|^{2}-|U_{\beta j}^{D}|^{2})(|U_{\alpha i}^{S}|^{2}-|U_{\alpha k}^{S}|^{2})$

$$P_{ij}^{c} = \frac{\exp\left(-\frac{\pi}{2}\gamma_{ij}^{R}F_{ij}\right) - \exp\left(-\frac{\pi}{2}\gamma_{ij}^{R}\frac{F_{ij}}{\sin^{2}\theta_{ij}}\right)}{1 - \exp\left(-\frac{\pi}{2}\gamma_{ij}^{R}\frac{F_{ij}}{\sin^{2}\theta_{ij}}\right)}$$

$$\gamma_{ij}^R = \frac{\Delta m_{ij}^2 \sin^2 2\theta_{ij}}{2E(1+z)\cos 2\theta_{ij} |\mathrm{d}\ln\rho/\mathrm{d}r|_R}$$

 $\gamma_{ij} \sim 0$ corresponds to extreme non-adiabaticity.

$$F_{ij} = \frac{4}{\pi} \operatorname{Im} \int_0^i db \frac{(b^2 + 1)^{1/2}}{(b \tan 2\theta_{ij} + 1)} = \begin{cases} 1 - \tan \theta_{ij} \\ 1 - \cot \theta_{ij} \end{cases}$$

 ν -osc probability

) — Jumping probability

$$\longrightarrow$$
 Non-adiabaticity $\implies \gamma_{ij}^R \lesssim 1$

 $\rho(r) = \rho_0 \exp(-r/a)$

 $|\mathrm{d}\ln\rho/\mathrm{d}r|_R = 1/a$

 $a^2 \theta_{ij}, \quad \text{if } \theta_{ij} \leqslant \pi/4$ ${
m Jt}^2\, heta_{ij},$ if $\theta_{ij} > \pi/4$

Motivation for ν -DM interactions

Relieves Hubble tension!

effectively generating a negative phase-shift wrt ΛCDM .

S. Ghosh, R. Khatri, T. Roy, PRD102 (2020) 123544

- Negates the phase shift introduced by the free-streaming neutrinos
- in the photon temperature transfer function pushing H_0 to higher values.
- Due to the ν -DM interactions, neutrinos scatter and cannot free-stream,

ν -DM interaction: Constraints on thermal relic DM!

Relic density should not exceed the observed limit: $\langle \sigma v \rangle \ge 3 \times 10^{-26} \text{cm}^3 \text{ s}^{-1}$

• Collisional damping: $\nu - DM$ scattering tends to erase small scale density perturbations, thereby disrupting large scale structure formation.

$$\sigma_{\rm el} \lesssim 10^{-48} \times \left(\frac{m_{\rm DM}}{{\rm MeV}}\right) \left(\frac{1}{2}\right)$$

This alters N_{eff} significantly unless $m_{\text{DM}} \ge 10$ MeV.

No appreciable suppression with thermal relics!

For BEC DM, the large number density pays off!

 $\left(\frac{T_0}{2.35 \times 10^{-4} \text{eV}}\right)^2 \text{cm}^2$

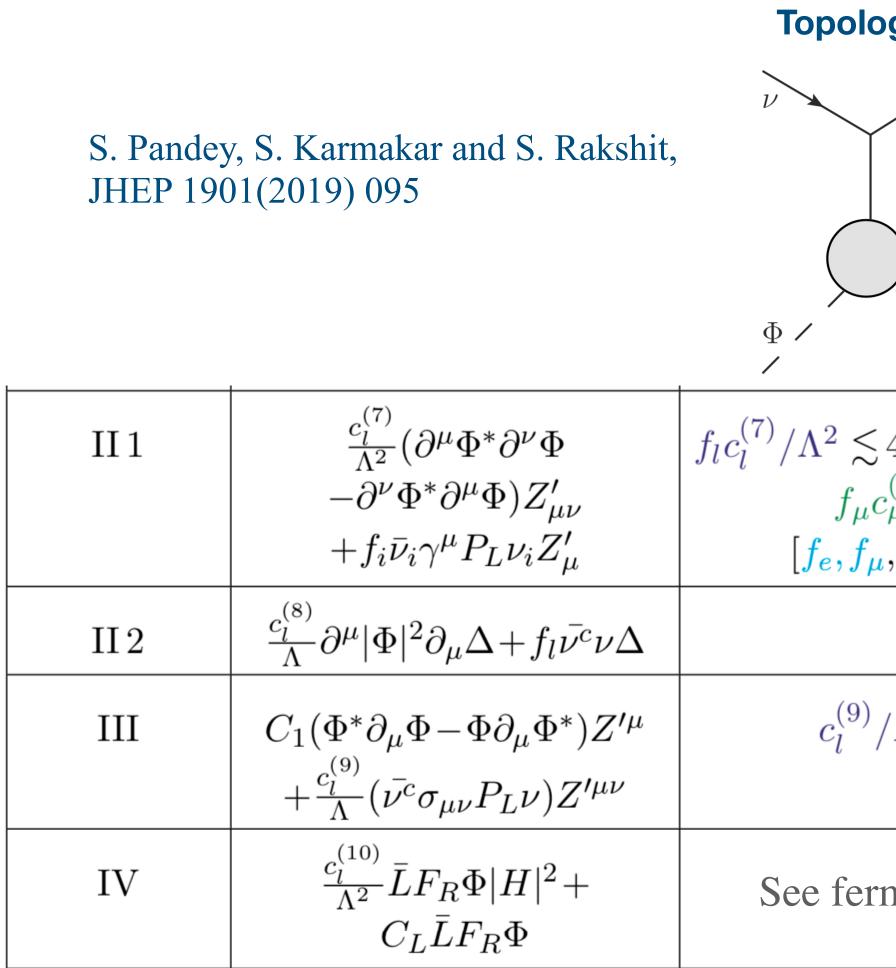
• **Constraints from BBN:** In standard cosmology the decoupling temperature of neutrinos from the rest of the SM particles is $T_{dec} \sim 2.3$ MeV and the effective number of neutrinos $N_{eff} = 3.045$. $\nu - DM$ scattering below this T_{dec} transfers entropy from DM to the ν sector, changing the effective number of d.o.f. in thermal equilibrium with the ν s.

\mathcal{V} -DN

	satisfies 1% flux suppression criteri	S. Pandey, S. Karmakar and S. Rakshit, JHEP 1901(2019) 095	Topology I
Topology	Interaction	Constraints	Remarks
I1	$\frac{c_l^{(1)}}{\Lambda^2} \ (\bar{\nu}i\partial\!\!\!/ \nu)(\Phi^*\Phi)$	$\begin{split} & c_l^{(1)}/\Lambda^2 \lesssim 8.8 \times 10^{-3} \mathrm{GeV}^{-2}, c_e^{(1)}/\Lambda^2 \lesssim 1.0 \times 10^{-4} \mathrm{GeV}^{-2}, \\ & c_\mu^{(1)}/\Lambda^2 \lesssim 6.0 \times 10^{-3} \mathrm{GeV}^{-2}, c_\tau^{(1)}/\Lambda^2 \lesssim 6.2 \times 10^{-3} \mathrm{GeV}^{-2} \end{split}$	disfavoured
I 2	$\frac{\frac{c_l^{(2)}}{\Lambda^2}(\bar{\nu}\gamma^{\mu}\nu)(\Phi^*\partial_{\mu}\Phi)}{-\Phi\partial_{\mu}\Phi^*)}$	$\begin{split} & c_l^{(2)}/\Lambda^2 \lesssim 1.8 \times 10^{-2} \mathrm{GeV}^{-2}, c_e^{(2)}/\Lambda^2 \lesssim 2.6 \times 10^{-5} \mathrm{GeV}^{-2}, \\ & c_\mu^{(1)}/\Lambda^2 \lesssim 1.2 \times 10^{-2} \mathrm{GeV}^{-2}, c_\tau^{(1)}/\Lambda^2 \lesssim 1.3 \times 10^{-3} \mathrm{GeV}^{-2} \end{split}$	disfavoured
I 3	$rac{c_l^{(3)}}{\Lambda} ar{ u^c} u \Phi^\star \Phi$	$c_l^{(3)}/\Lambda \leq \! 0.5\mathrm{GeV^{-1}}$	favoured ^a
I 4	$ \begin{array}{c} \frac{c_{l}^{(4)}}{\Lambda^{3}}(\bar{\nu^{c}}\sigma^{\mu\nu}\nu)(\partial_{\mu}\Phi^{*}\partial_{\nu}\Phi \\ -\partial_{\nu}\Phi^{*}\partial_{\mu}\Phi) \end{array} $	$c_l^{(4)}/\Lambda^3 \lesssim \! 2.0 \!\times\! 10^{-3} {\rm GeV^{-3}}$	disfavoured
I 5	$\frac{c_l^{(5)}}{\Lambda^3}\partial^{\mu}(\bar{\nu^c}\nu)\partial_{\mu}(\Phi^*\Phi)$	$c_l^{(5)}/\Lambda^3 \lesssim \! 7.5 \! \times \! 10^{-4} {\rm GeV^{-3}}$	disfavoured
I 6	$ \frac{c_l^{(6)}}{\Lambda^4} (\bar{\nu}\partial^\mu\gamma^\nu\nu) (\partial_\mu\Phi^*\partial_\nu\Phi) \\ -\partial_\nu\Phi^*\partial_\mu\Phi) $	$\begin{split} c_l^{(6)}/\Lambda^4 \lesssim & 2.5 \times 10^{-5} \mathrm{GeV^{-4}}, c_e^{(6)}/\Lambda^4 \lesssim & 1.2 \times 10^{-6} \mathrm{GeV^{-4}}, \\ & c_{\mu}^{(6)}/\Lambda^4 \sim c_{\tau}^{(6)}/\Lambda^4 \lesssim & 10^{-5} \mathrm{GeV^{-4}} \end{split}$	disfavoured

 $Z \to inv, \text{LEP monophoton} + \not\!\!\!E_T, Z \to \mu^+\mu^-, Z \to \tau^+\tau^- \text{ and } (g-2)_{e,\mu}.$

\mathcal{V} -DM effective interactions



 $Z \to inv$, LEP monophoton+ $\not\!\!\!E_T$,

 $^b {\rm Favoured}$ if $0.08\,{\rm eV} \lesssim m_{\rm DM} \lesssim 0.5\,{\rm eV}$ for $m_{Z'} \sim 10\,{\rm MeV}$ and $E_\nu \sim 1~{\rm PeV}$

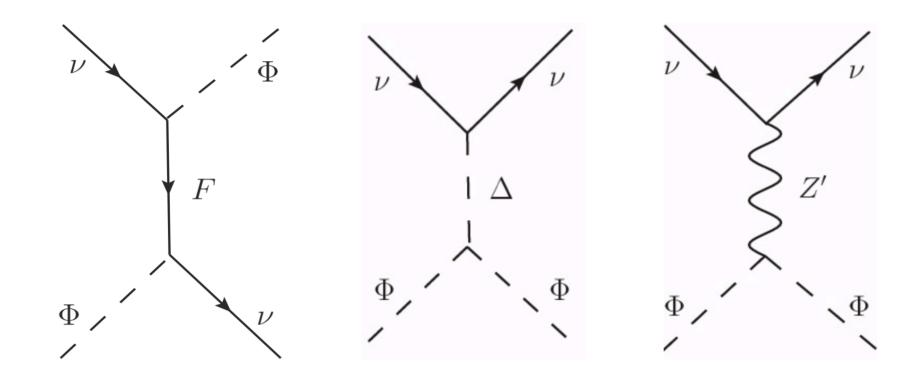
ogy II	Topology III	Topology IV
$c^{(7)}_{\mu}/\Lambda^2 \sim f_{\tau} c^{(7)}_{\tau}/\Lambda^2$	$f_e c_e^{(7)} / \Lambda^2 \lesssim 1.9 \times 10^{-5} \mathrm{GeV}^{-2}$ $\lesssim 8.1 \times 10^{-3} \mathrm{GeV}^{-2},$ $0.02] \mathrm{for} m_{Z'} \sim 10 \mathrm{MeV}$	² , disfavoured
$m_{\nu} \sim f_l v_{\Delta} \lesssim 0.1 \mathrm{eV}$	$V, m_{\Delta} \gtrsim 150 \mathrm{GeV}$	disfavoured
$/\Lambda \lesssim 3.8 imes 10^{-3} { m GeV}$	V^{-1} for $m_{Z'} \sim 10 \mathrm{MeV}$	favoured ^b
rmionic case for rer	normalisable interactions	disfavoured

$$Z \to \mu^+ \mu^-, Z \to \tau^+ \tau^- \text{ and } (g-2)_{e,\mu}.$$

ν -DM renormalisable interactions

S. Pandey, S. Karmakar and S. Rakshit, JHEP 1901(2019) 095

Mediator	Interaction	Constraints	Remarks
Fermion	$(C_L \overline{L} F_R + C_R \overline{l}_R F_L) \Phi + h.c.$	$m_F \gtrsim 100 \text{GeV}, m_{\text{DM}} \gtrsim 10^{-21} \text{eV},$ $C_L C_R \lesssim \{2.5, 0.5\} \times 10^{-5} \text{ for } e \text{ and } \mu$	disfavoured
		$O_L O_R \gtrsim \{2.5, 0.5\} \times 10$ for e and μ	
Scalar	$f_l \bar{L}^c L \Delta + g_\Delta \Phi^* \Phi \Delta ^2$	$m_{\nu} \sim f_l v_{\Delta} \lesssim 0.1 \mathrm{eV}, g_{\Delta} \sim v_{\Delta}^2 / m_{\mathrm{DM}}^2$	disfavoured
Vector	$f_l'\bar{L}\gamma^{\mu}P_LLZ'_{\mu} + ig'(\Phi^*\partial^{\mu}\Phi$	$[f_e, f_\mu, f_\tau] \lesssim [10^{-5}, 10^{-6}, 0.02]$ for	favoured
	$-\Phi\partial^{\mu}\Phi^{*})Z'_{\mu}$	$m_{Z'} \sim 10 \mathrm{MeV}$	only for ν_{τ}



 $Z \to inv, \text{LEP monophoton} + \not{\!\!E}_T, Z \to \mu^+\mu^-, Z \to \tau^+\tau^- \text{ and } (g-2)_{e,\mu}$

ν -oscillation with ν -DM interactions S.Karmakar, S.Pandey and SR, JHEP 10 (2021) 004

$$\mathcal{L} \supset ig'(\phi^* \partial_\mu \phi - \phi \,\partial_\mu \phi^*) Z'^\mu + f \bar{\nu}$$
$$U(1)_\tau$$
$$V_{\tau\tau} = \frac{G'_F}{m_{\rm DM}} \rho(r) \qquad G'_F = g'$$

$$H_{\text{eff}} = \frac{1}{2E(1+z)} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{12}^2 & 0 \\ 0 & 0 & \Delta m_{32}^2 \end{pmatrix} U^{\dagger}$$

For large E the first term vanishes

 $ar{
u}_ au\gamma_\mu
u_ au Z'^\mu$ י $f/m^2_{Z'}$

Joshipura, Mohanty,

Non-adiabatic flavour transitions help!

 $-\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{\tau\tau}(r) \end{pmatrix} \qquad \text{Only } V_{\tau\tau} \neq 0$

 $\nu - \bar{\nu} - \phi - \phi^* \longrightarrow$ Constrained from corresponding charged lepton interactions

For vector mediated ν -DM interactions: $\epsilon_{ee} \leq 10^{-38} \, {\rm eV}^{-2} \quad \longrightarrow \quad \text{Avoids anomalous energy loss in sun}$ $\epsilon_{\mu\mu} \lesssim 1.5 \times 10^{-26} \,\mathrm{eV}^{-2} \longrightarrow Z'$ search at LHC $\epsilon_{\mu\tau} \lesssim 10^{-31} \, {\rm eV}^{-2} \longrightarrow {\rm flavour violating charged lepton decays}$ $\epsilon_{ue} \lesssim 10^{-40} \, {\rm eV}^{-2} \longrightarrow {\rm flavour violating charged lepton decays}$ $\epsilon_{\tau e} \leq 4 \times 10^{-32} \,\mathrm{eV}^{-2} \longrightarrow \mathrm{flavour violating charged lepton decays}$ $\epsilon_{\tau\tau} \leqslant 1.3 \times 10^{-20} \,\mathrm{eV}^{-2}$ partial Z decay width

For refs. see S.Karmakar, S.Pandey and SR, JHEP 10 (2021) 004

$$\theta_{12} = 33.8^{\circ}, \ \theta_{23} = 48.6^{\circ}, \ \theta_{13} = 8.6^{\circ}, \ \delta_{\rm CP} = 1.22\pi \text{ m}$$
$$\Delta m_{32}^2 = m_3^2 - m_2^2 = 2.53 \times 10^{-3} \text{ eV}^2$$
$$\Delta m_{21}^2 = m_2^2 - m_1^2 = 7.39 \times 10^{-5} \text{ eV}^2$$
$$\therefore 20^M = 4 - \frac{2}{3} \div 20 \times \sqrt{10^{-5} \text{ eV}^2}$$

$$\sin 2\theta_{13}^M = \Delta m_{31}^2 \sin 2\theta_{13} / \left[(2E(1+z)V_{\tau\tau} - \Delta m_{31}^2 \cos 2\theta_{13})^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2 \right]^{1/2}$$

Very large E leads to vanishing mixing angles

$$2E_{ij}^R(1+z)V_{\tau\tau} = \Delta m_{ij}^2\cos 2\theta_{ij} \longrightarrow \text{Res}$$

 θ_{23} lies in the 2nd octant \implies resonance condition is satisfied for $V_{\tau\tau} < 0$ for ij = 32 θ_{13} lies in the 1st octant \implies resonance condition is satisfied for $V_{\tau\tau} > 0$ for ij = 31

rad

JHEP 01 (2019) 106 http://www.nu-fit.org/

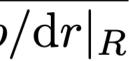
sonance condition

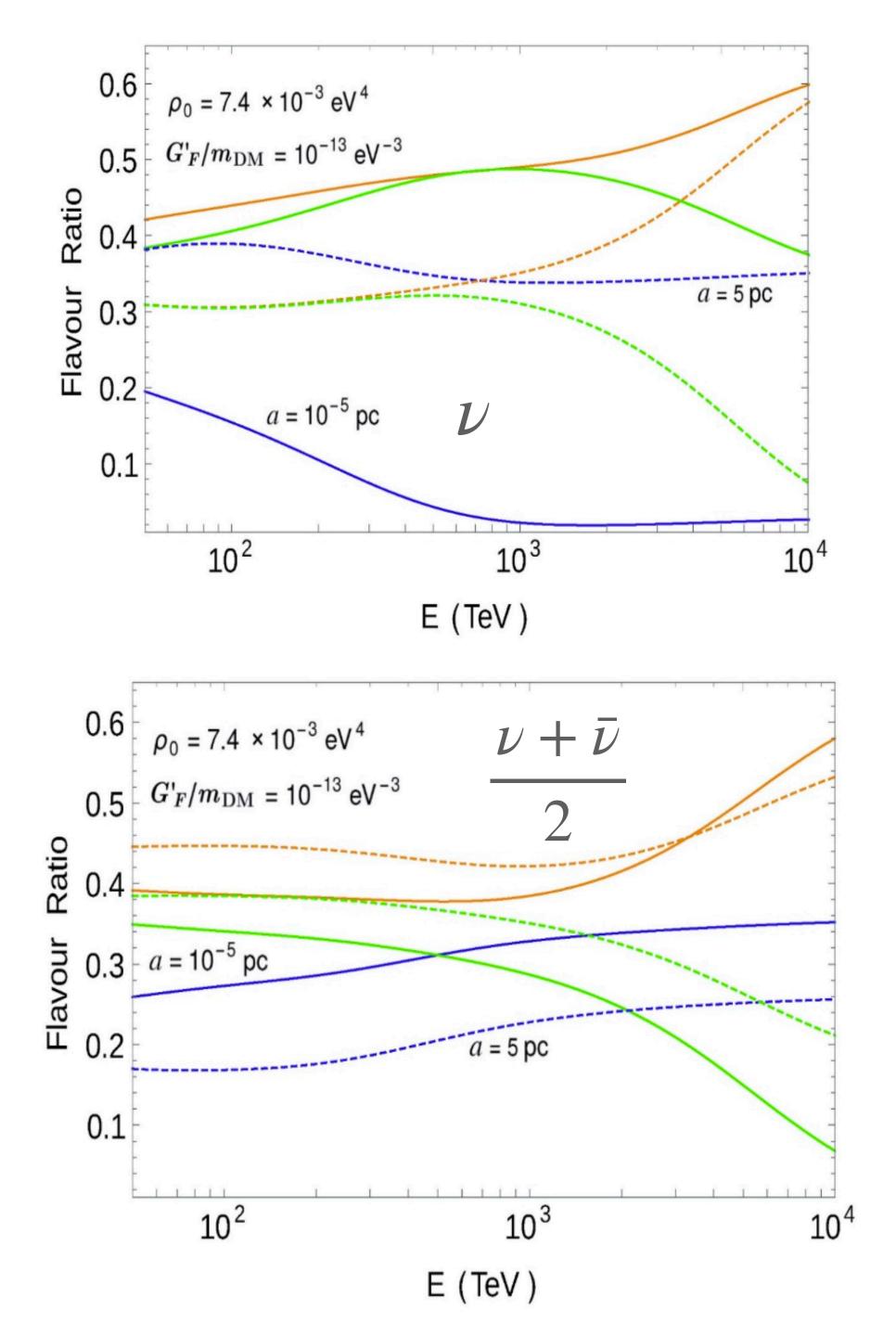
$$\begin{array}{l} \text{At }E=1 \; \text{PeV} \\ \text{for } V_{\tau\tau} > 0, \, \gamma_{31} \sim 1 \; \text{is obtain} \\ \text{for } V_{\tau\tau} < 0, \, \gamma_{32} \sim 1 \; \text{is obtain} \end{array}$$

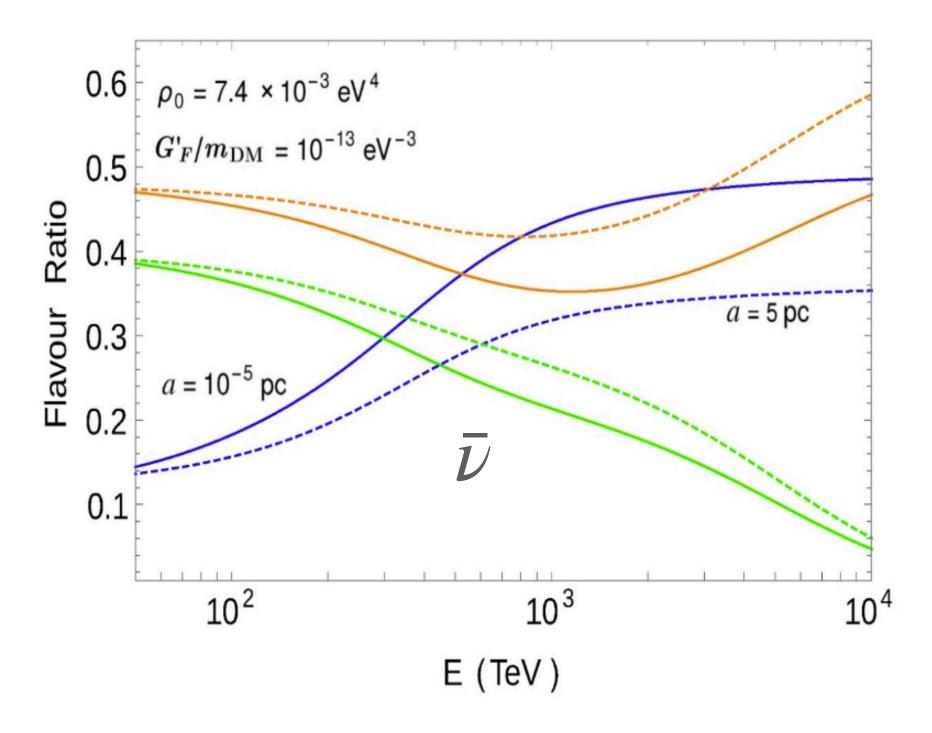
For lower energies, non-adiabaticity is achieved for lower values of a. We take $V_{\tau\tau} > 0$ for neutrinos and $V_{\tau\tau} < 0$ for anti-neutrinos

Depending on the various parameters at different energies, adiabatic or nonadiabatic flavour transitions are possible.

ned for $a \sim 10^{-3}$ pc. $\gamma_{ij}^R = \frac{\Delta m_{ij}^2 \sin^2 2\theta_{ij}}{2E(1+z)\cos 2\theta_{ij} |d \ln \rho/dr|_R}$







Energy dependence of flavour ratios

Source at z = 2

{blue, orange, green} $\longrightarrow \{e, \mu, \tau\}$

solid: non-adiabatic ($a = 10^{-5}$ pc)

dashed: adiabatic (a = 5pc)

Neutrino flavour distinction at IceCube

Track to shower ratio A_1 is the effective area for detecting ν_1 Probabilities of obtaining a track from a ν_{μ} or ν_{τ} are 0.8 and 0.13 respectively

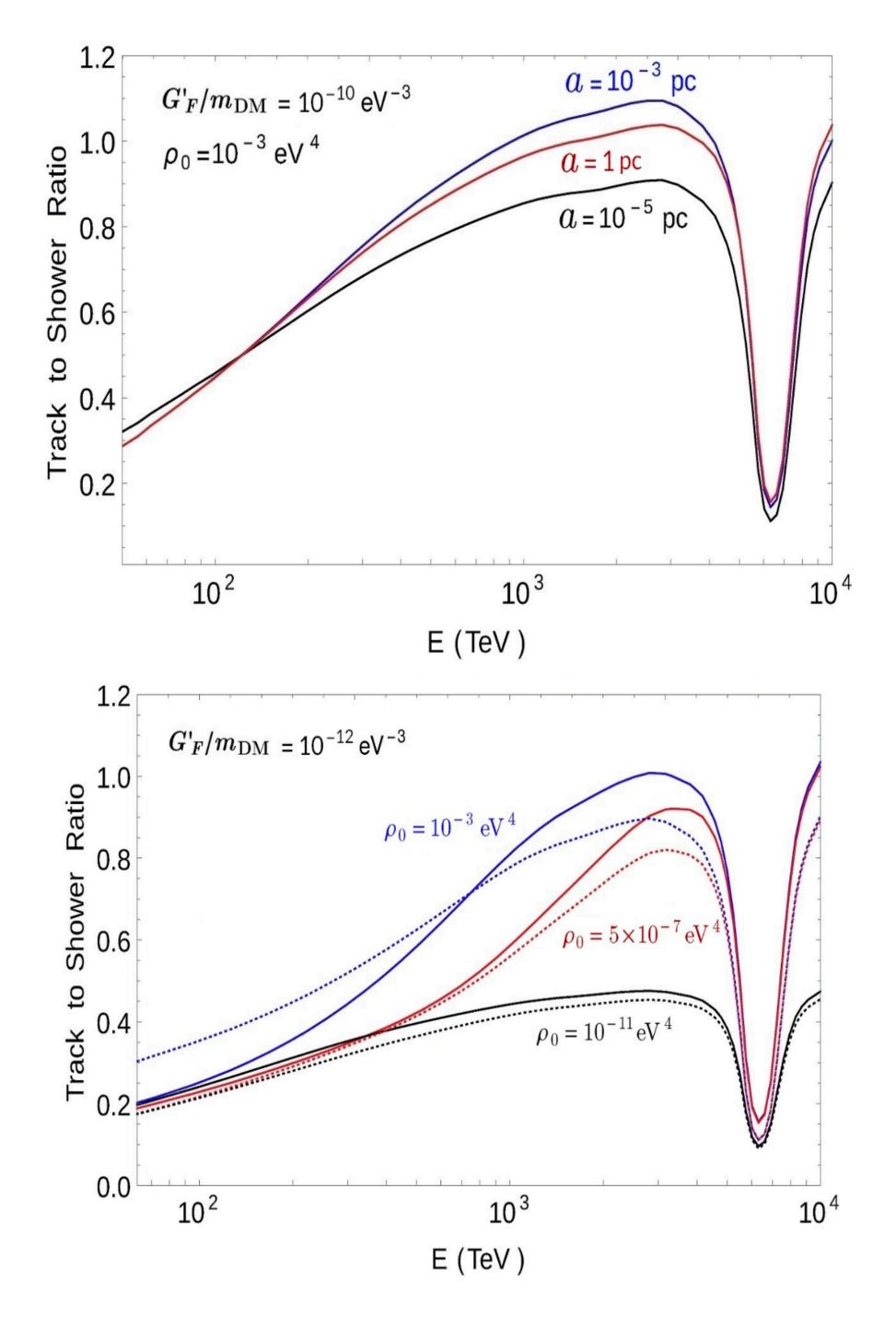
For E > 1 PeV, ν_{τ} produces distinguishable signatures: double-bang / lollipop

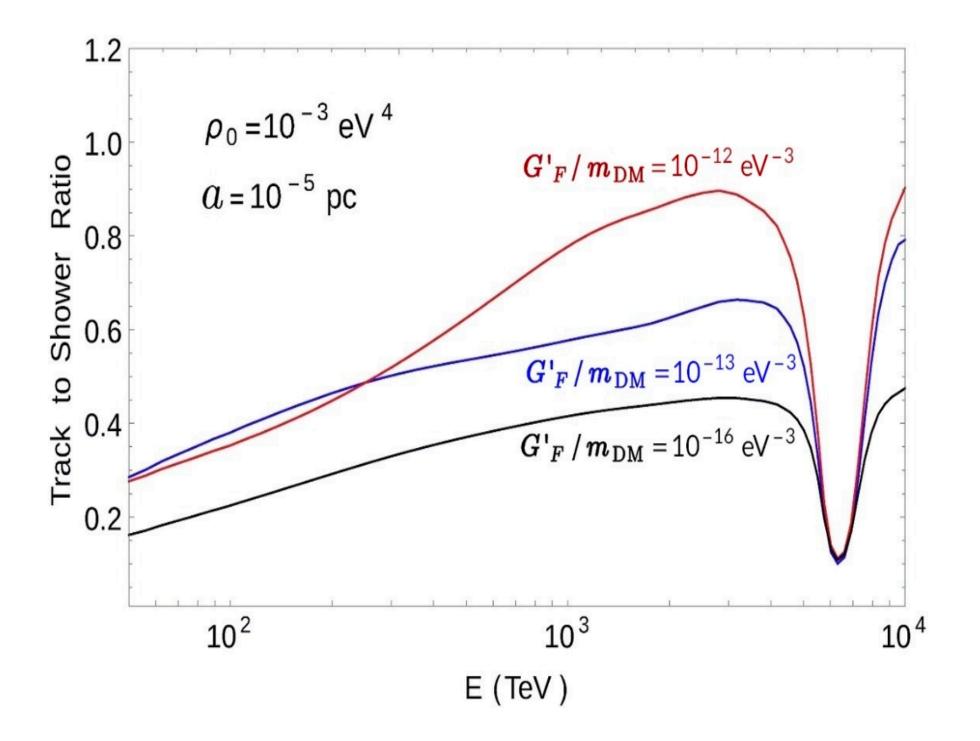
Difficult at lower energies \longrightarrow Pion and neutron echos help in TeV-PeV range!

$$\frac{8A_{\mu}f_{\mu}^{D} + 0.13A_{\tau}f_{\tau}^{D}}{+ 0.2A_{\mu}f_{\mu}^{D} + 0.87A_{\tau}f_{\tau}^{D}}$$

- Can we distinguish between the electromagnetic shower from ν_{ρ} vs. hadronic shower from ν_{τ} ?

Li, Bustamante, Beacom, PRL122(2019)151101





Sensitivity of parameters: $\{a, \rho_0, G'_F / m_{DM}\}$ Source at z = 2(left) solid: adiabatic (a = 1pc) 5 (left) dotted: non-adiabatic ($a = 10^{-5}$ pc)

Outlook

- with 1:1:1. Poor statistics although
- ratio would turn out to be a nice tool
- In addition to the neutrino spectrum, the energy dependence of the flavour ratio can help in neutrino astronomy
- By 2040, one expects that the flavour composition of the astrophysical sources would be revealed to within 6% (JCAP04(2021)054)
- Quite a few experiments are lined up!

• At present one integrates over energy to plot the flavour ratio. Consistent

As the statistics improves, the energy dependence of the detected flavour

