
Probing strong gravity & the densest objects in 
the cosmos with gravity’s messengers
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The main questions

1. How to distinguish neutron stars (NSs) from 
black holes (BHs) in gravitational waves (GWs) 
when the binary components are of low mass?

a. How heavy / light can neutron stars be? (This probes 
nuclear physics.)

b. How heavy / light can stellar-mass black holes be? 
(Probes stellar evolution, galactic dynamics, non-
Gaussianities in primordial curvature fluctuations.)

2. How to test if the high-mass GW sources are 
indeed black holes and not boson stars or BH 
mimickers? (Tests strong gravity.)

3. Can we measure the rate of cosmic expansion 
with GW binaries?

4. Are there other ways of testing General 
Relativity with these observations?
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Stellar Evolution
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Current status
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Are these black holes 
or neutron stars?



Imprints of the nature of compact objects on GWs

rotational 
deformations≈ point-masses, same 

signals for all objects

[≳103 cycles for BNSs at 
fGW≳10Hz]

absence of 
horizon 
(absorption; 
tidal heating)

tidal effects
(tidal 
deformability)

BH-BH other objects
???

tidal disruption,
postmerger, 
…

tidal excitation of various oscillation modes

[Slide courtesy: Tanja Hinderer]
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Evolution of perturbed horizons in BBHs:
Tidal heating
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.

Prasad+, arxiv:2106.02595 (2021).
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Evolution of perturbed horizons in BBHs
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Prasad+, arxiv:2106.02595 (2021).
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Lack of horizon-absorption in 
extreme mass-ratio inspirals (EMRIs) 

causes GW dephasing
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Sayak Datta, R. Brito, SB, 
P. Pani, S. Hughes, arxiv:1910.07841.

.

Distanceà

Spin (c) = 0.9.



Testing blackhole-ness
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• Point-particle contribution to the waveforms determines the component masses 
and spins but not the presence of horizons.

• Test based on finite-size contributions 
1. Tidal heating (TH): Much strong in black holes than in neutron stars
2. Tidal deformation (TD): Much stronger in (low mass) neutron stars than BHs.

Black holes exchange energy with orbit. If the bodies are (at least partially) 
absorbing, they back-react on the orbit, exchanging their energy and angular 
momentum with the orbit. This effect is tidal heating.

[Datta, Phukon, SB, PRD (2021)]



Tidal deformability:
Measuring neutron star compactness
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• How stiff or soft the NS EOS is 
determines how much the NS will 
flex (with quadrupole moment Qij) 
in an external tidal field, Eij . 

• The flexing of a neutron star affects 
the GW emitted by it.

The EOS parameter to be measured is λ,
where  Qij = −λEij,   and 
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k2  is the "second Love number". 
It is bigger for stiffer EOS. 

[Bauswein+, arxiv:1508.05493]
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What is the densest form of matter?
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[Credit: Wikipedia Commons / Robert Schulze.]

Outer crust: BPS

Inner crust: CLDM

Our main focus here

Inner core: A 
speed-of-sound 
parameterization



If the object is a BNS, then what? Neutron 
star EoS

J. Lattimer, ApJ 2012.
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Breaking the mass-redshift 
degeneracy using NS EoS

• We measure the detector-frame mass of 
neutron stars, which is the redshifted mass 
𝑚! 	≡ 𝑚 1+ 𝑧 . Here, 𝑚	is the source-
frame mass, which is what we are targeting 
to obtain the inherent NS mass distribution.

• Use the measured  Λ  to break the 𝑚− 𝑧  
degeneracy: 

                 Λ (or the NS EoS) gives us the 
source-frame mass. 
                That mass and 𝑚!	give us the source 
redshift!
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𝜦
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NS tide in the pre-merger phase
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Total phase = Point-particle phase + Tidal phase-correction.

Point-particle phase has non-spinning and spinning (aligned or anti-aligned) terms 
up to 3.5pN. We add test-particle non-spinning corrections for 4pN to 6pN
to bridge the gap up to the terms where tidal corrections are present (5pN and 6pN).

Tidal phase-correction is: 

[Vines, Flanagan, Hinderer, 
arXiv:1101.1673v1.;
Damour, Nagar, Villain, 
PRD85, 123007 (2012). 
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where     v = Mω( )1/3  ,  χ i =mi /M   and  "i"  is binary component index. 

M =m1 +m2     and    η =m1m2 /M 2.  



GW170817’s Implications on Equation of State:
from inspiral part of waveform
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[LIGO-Virgo Collab, arxiv:1805.11681 ]

Tidal deformability: 𝚲𝟏.𝟒= 190$%&'()*'    (90%).

Radius R	= 11.9$%.+(%.+  km (90%)
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Neutron star (NS) equation of state 
(EOS) from GWs (agnostic priors)
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LIGO-Virgo, arxiv: 2006.12611
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Biswas, Char, Nandi, Bose, arxiv 2020.

.

EoS model:
a hybrid nuclear (𝜌 < 1.25𝜌')
+ Piecewise Polytrope



Transition density: 
From nuclear to core polytrope
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Biswas, Char, Nandi, Bose,
PRD, arXiv:2008.01582.

.

Astro evidence for transition from nuclear to first
polytrope, around 1.25 times nucl. saturation density.



Neutron star EoS posteriors 
from data
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Rezzolla+, ApJL, 2018;
Biswas+, MNRAS 2021.

Maximum non-spinning NS 
mass ~ 2.16 𝑀⨀  .
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The Hubble parameter from dark sirens + GW170817
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Without any prior on inclination angle:

        H0 = 70$-(%&  km/s/Mpc (68%).

             [LIGO-Virgo+EM partners, Nature 2017] [LIGO-Virgo, ApJ 2023]



Dark matter accretion in neutron stars
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.

[Bhattacharya+, PRL (2023)]



Testing General Relativity via addition of deviation terms 
in waveform phase
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.

[LIGO-Virgo, Tests of GR with GWTC3, arXiv:2112.06861v1]



GW observing scenario
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Take-away messages
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1. The maximum mass of a stable non-spinning (TOV) neutron star estimated to be ~ 2.16 𝑀⨀ , 
with R	= 11.9#$.&'$.&  km and densities at least a few times nuclear saturation density. Several 
stiff equations of state have been ruled out.

2. Heavier compact objects are presumably black holes, with those in [2.16, 4] 𝑀⨀ most likely 
being merger remnants. Not clear if stellar collapse can produce such remnants. 

3. Challenging to distinguish neutron stars from black holes in the lower-mass gap unless their 
signals are O(10) times stronger. Tidal heating in next generation detectors can confirm 
presence of horizons in nearby black hole binaries, individually. 

4. 𝐻( estimation set to get more precise with O5.

5. GW signals from neutron star and black hole binaries may be able to constrain certain non-
annihilating dark matter candidates, but the jury is still out.

24



20241016 Sukanta@PPC2024 25

.

25Tathagata Ghosh Bhaskar Biswas Shasvath KapadiaSamanwaya Mukherjee Shristi Tiwari

Sayak Datta Khun Sang Phukon Vaishak Prasad Anshu Gupta Badri Krishnan

Collaborators



GW observing scenario
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O4 alerts so far

2024/10/02 Sukanta @ NEOSGRAV2024, Goa 27

O4a Significant Detection Candidates: 81 (92 Total - 11 Retracted)
O4a Low Significance Detection Candidates: 1610 (Total)

O4b Significant Detection Candidates: 61 (66 Total - 5 Retracted)
O4b Low Significance Detection Candidates: 872 (Total)

O4b NSBH alert:
 S240422ed  m1 = 3.89 M⊙, 1.07 M⊙

Published NSBH: O4a, GW230529: masses:  m1 = 2.5 – 4.5 M⊙ , m2 = 1.2 – 2.0 M⊙

https://gracedb.ligo.org/superevents/S240422ed/view/
https://gracedb.ligo.org/superevents/S230529ay/view/


GW observing scenario

Adhikari+, CQG  (2020)20241016 Sukanta@PPC2024 28



Results [Summary of Part I]

Ref.: Ghosh et al. (2022)
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Error at ~15-20%  for the first two 
priors (at 90% CI), but will drop to 
3-5% when scaled to 1000 sources.



Results
(Gaussian mass distribution)

§ 50 Events

§ Redshift Distribution: Power Law
§ 𝛾 = 0.

§ Mass Distribution:  Gaussian
§ 𝑚)*+ = 1	𝑀⊙, 𝑚)-. = 2.25	𝑀⊙,
§ 𝜇 = 1.33	𝑀⊙, 𝜎 = 0.09	𝑀⊙.

§ 90% credible interval.
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Results
(double-Gaussian mass distrib.)

§ 5 Events

§ Redshift Distribution: Power Law
§ 𝛾 = 0.

§ Mass Distribution: Double Gaussian
§ = 𝑤𝐺$ + (1 − 𝑤)𝐺/,
§ 𝑚)*+ = 1	𝑀⊙, 𝑚)-. = 2.25	𝑀⊙,
§ 𝐺$: 	𝜇$ = 1.34	𝑀⊙, 𝜎$ = 0.07	𝑀⊙,
§ 𝐺/: 	𝜇/ = 1.8	𝑀⊙, 𝜎$ = 0.21	𝑀⊙,
§ 𝑤 = 0.65.

§ 90% credible interval.
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Testing GR: Consistency of binary black hole
inspiral & “ringdown” waveforms
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Abhirup Ghosh et al., PRD 2016.
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Compositional variation with NS mass

Sukanta@PPC2024 33

Fig. Compositions of NSs with 3 different 
masses for what we term as our Central EOS.
Lighter stars allow probing the neutron matter 
EOS (outer core) better than heavier stars. 
Outer crust is taken as BPS.

Baryon number density,

Pr
es
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re

,

𝚲

[M. Forbes, SB, S. Reddy, D. Zhou, A. Mukherjee, 
S. De,  PRD 2019; arxiv:1904.04233.]
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How does GW know
about tidal heating?
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1. Orbital / rotational motion feeds GW emission (via time-varying quadrupole) 
and tidal heating (TH)

2. For tidal heating: Calculate energy flux through the horizon; a Weyl tensor 
projection at the horizon carries this information. Results in mass (and spin) 
change.  

3. The energy equation relates the GW phasing to tidal heating. 

𝑑𝐸012
𝑑𝑡

= −
𝑑𝐸34
𝑑𝑡

−
𝑑𝑀$
𝑑𝑡

−
𝑑𝑀/
𝑑𝑡

	.

Hartle, PRD 8, 1010 (1973), 
Hughes, PRD 64, 064004 (2001).
Brito, Cardoso, Pani, arxiv:1501.06570.
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GW dephasing for different central object spins
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.

Sayak Datta, R. Brito, SB, 
P. Pani, S. Hughes, arxiv:1910.07841.

Time à Distanceà

Spin (c)
= 0.7.

Spin (c)
= 0.9.



Results [Summary of Part I]

Ref.: Ghosh et al. (2022)
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Correlation between physics @ horizon 
and that at infinity 
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Prasad, Gupta, SB, Krishnan, Schnetter, PRL (2020).

.

Empirical relation of news and shear:



a
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Nuclear-only EOS model: 
Posteriors from astro data
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Biswas, Char, Nandi, Bose,
PRD, arXiv:2008.01582.

.

Agnostic prior

Supports stiffer EOS than PP.



a
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Piecewise-polytrope only (PP) EOS model: 
Posteriors from astro data
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Biswas, Char, Nandi, Bose, PRD, arXiv:2008.01582.

.

PP suggests softer stars compared to rel. EOSs.

NICER: PSR J0030 + 0451,
Riley+ ApJL (2019); 
Miller+ ApJL (2019).
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Modeling neutron matter
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Isospin asymmetry:

	𝛿 ≡
-".-#
-"/-#

  .

Deviation from nuclear
saturation	density:



Tracking the redshift evolution

• An example of a redshift 
distribution of binary black holes

𝑚< 	≡ 𝑚 1 + 𝑧
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