

Probing BSM Physics with Multi-Messenger Astronomy

Bhupal Dev Washington University in St. Louis

> PPC 2024 IIT Hyderabad

October 16, 2024

A New Era of Multi-Messenger Astronomy

2109.10841

Compact Object Mergers

neutrinos

See talks by J. Ellis and S. Bose

Active Galaxies and Tidal Disruption Events

See talks by D. Hooper, S. Agarwalla, and S. Rakshit Ecological Fermi

Great news for both Astrophysics and Particle Physics.

Outline

New Multi-Messenger Probes of (B)SM Physics

• Decaying Heavy Dark Matter [Sui, BD, 1804.04919 (JCAP);

New (B)SM Resonances

• Pseudo-Dirac Neutrinos

• Axion-like Particles

Brdar, BD, Maitra, Suliga (in preparation)]

[Babu, BD, Jana, Sui, <u>1908.02779</u> (PRL);

Brdar, BD, Plestid, Soni, <u>2207.02860</u> (PLB);

BD, Jana, Porto, <u>2312.17315</u>]

[Carloni, Martinez-Soler, Arguelles, Babu, BD, 2212.00737 (PRDL);

BD, Machado, Martinez-Soler, 2406.18507]

[BD, Fortin, Harris, Sinha, Zhang, <u>2305.01002</u> (PRL) and *work in progress*]

HENs: Multi-Messenger Connection

$$E_{\gamma}^2 \Phi_{\gamma} \simeq \left. \frac{4}{K} E_{\nu}^2 \frac{\Phi_{(\nu+\bar{\nu})_{\text{tot}}}}{3} \right|_{E_{\nu}=0.5E_{\gamma}}$$

Meszaros 1708.03577 (ARNPS)

- IceCube best-fit in tension with gamma-ray constraints.
- Alternatives: Broken power-law, 2-component flux, neutrinophilic BSM contribution

Mild preference for a decaying dark matter component over purely astrophysical unbroken power-law flux

Sui, BD 1804.04919 (JCAP)

For a recent update, see Fiorillo, Valera, Bustamante, Winter 2307.02538 (PRD)

New SM Resonances with UHE Neutrinos

Accessible at neutrino telescopes!

Brdar, BD, Plestid, Soni, 2207.02860 (PLB)

New BSM Resonances with UHE Neutrinos

Probing the Nature of Neutrino Mass

- What if there is no signal in NDBD experiments?
- Time to think about alternative probes.

See talk by F. Deppisch

What do we know from Theory?

- Simplest possibility: Add SM-singlet Dirac partners ν_R to write Dirac mass.
- Also allows for a Majorana mass term $M_R \bar{\nu}_R^c \nu_R$.

$$M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix}.$$

- If $M_R = 0$, lepton number is preserved and neutrinos are **Dirac**.
- If $M_R \neq 0$, neutrinos are Majorana.
- If $||M_R|| \ll ||m_D||$, neutrinos are **pseudo-Dirac** (small active-sterile mass splitting).
- But isn't it more natural to have $||M_R|| \gg ||m_D||$ (seesaw)?

[Minkowski (PLB '77); Mohapatra, Senjanovic (PRL '80); Yanagida '79; Gell-Mann, Ramond, Slansky '79]

• Maybe, but $||M_R|| \ll ||m_D||$ is a logical possibility too.

[Wolfenstein (NPB '81); Petcov (PLB '82); Valle, Singer (PRD '83); Kobayashi, Lim (PRD '01)]

• Any model of Dirac neutrinos with Planck-suppressed operators would predict pseudo-Dirac neutrinos.

How to probe Pseudo-Dirac Neutrinos?

Oscillation effects are suppressed, unless L and E are such that $\delta m^2 L/E \sim 1$.

10

Here comes Multi-Messenger Neutrino Astronomy

11

A New Probe of Pseudo-Dirac Neutrinos

$$P_{\alpha\beta} = \frac{1}{2} \sum_{j=1}^{3} |U_{\beta j}|^2 |U_{\alpha j}|^2 \left[1 + \cos\left(\frac{\delta m_j^2 L_{\text{eff}}}{2E_{\nu}}\right) \right],$$

with $L_{\text{eff}} = \int \frac{dz}{H(z)(1+z)^2}$ and $H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda + (1 - \Omega_m - \Omega_\Lambda)(1+z)^2}.$

Carloni, Martinez-Soler, Arguelles, Babu, BD, 2212.00737 (PRDL)

First IceCube Constraints on Pseudo-Dirac Neutrinos

Carloni, Martinez-Soler, Arguelles, Babu, BD, 2212.00737 (PRDL)

Energy-dependent Flavor Triangles

CvB matter effect: $V_{\nu_{\alpha}} = \sqrt{2}G_F(1+\delta_{\alpha\beta})(n_{\nu_{\beta}}-n_{\bar{\nu}_{\beta}})$ Notzold, Raffelt (NPB '88)

$$P_{\alpha\beta} = \frac{1}{2} \sum_{j} |U_{\alpha j}|^2 |U_{\beta j}|^2 \left[1 + \cos 2\widetilde{\theta}^i_j \cos 2\widetilde{\theta}^f_j \cos \left(\frac{\delta m_j^2 L_{\text{eff}}}{4E_\nu} \right) + \sin 2\widetilde{\theta}^i_j \sin 2\widetilde{\theta}^f_j \cos \left(\int dx \frac{\delta \widetilde{m}^2_j}{4E_\nu} + \frac{\delta m_j^2 L_{\text{eff}}}{4E_\nu} \right) \right].$$

BD, Machado, Martinez-Soler, 2406.18507

MSW Resonance in Hidden Neutrino Sources

Column density $N_{\rm H} = \int n_e dr \ge \sigma_T^{-1} \simeq 1.5 \times 10^{24} \, {\rm cm}^{-2}$ corresponds to unity optical depth.

$$\sqrt{2}G_F n_e^{\rm res} = \frac{\Delta m_{i1}^2}{2E_\nu} \cos 2\theta_{1i}.$$

Dighe, Smirnov, <u>9907423</u> (PRD)

Can drastically change the flavor composition of HENs.

- Roughly one in four AGNs is Compton thick.
- Maybe the reason why most of the HEN sources are unknown.

Flavor Matters but Matter Flavors HENs

	Vacuum Oscillations (NO)
π -decay	$(1/3, 2/3, 0)_S \rightarrow (0.30, 0.37, 0.33)_{\oplus}$
μ -damped	$(0,1,0)_S \rightarrow (0.17,0.47,0.36)_\oplus$
n-decay	$(1,0,0)_S ightarrow (0.55,0.17,0.28)_\oplus$
Mat	tter Effect (NO), pp production
π -decay	$(1/3, 2/3, 0)_S \rightarrow (0.34, 0.33, 0.33)_{\oplus}$
μ -damped	$(0,1,0)_S ightarrow (0.34,0.33,0.33)_\oplus$
n-decay	$(1,0,0)_S ightarrow (0.67,0.08,0.25)_\oplus$
Mat	tter Effect (NO), $p\gamma$ production
π -decay	$(1/3, 2/3, 0)_S \rightarrow (0.23, 0.40, 0.37)_{\oplus}$
μ -damped	$(0,1,0)_S ightarrow (0.50,0.20,0.30)_\oplus$
n-decay	$(1,0,0)_S \rightarrow (0.67,0.08,0.25)_{\oplus}$

BD, Jana, Porto, <u>2312.17315</u>

- Might be the *only* way to probe heavily Compton-thick neutrino sources with no electromagnetic counterparts.
- Important implications for modeling of cosmic X-ray background, black hole growth and galaxy evolution.

GW170817: Another Multi-Messenger Frontier

ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LWA, ALMA, OVRO, EVN, e-MERLIN, MeerKAT, Parkes, SRT, Effelsberg

 $-100 -50 0 50 10^{-2} 10^{-1} 10^{0} 10^{0} 10^{0}$

Supernova vs NS Merger: Which is Better?

- NS merger can reach slightly higher core temperature (40-100 MeV vs 30 MeV for SN).
- SN1987A was 1000 times closer than GW170817.
- Rate of GW-observable NS mergers is higher (10-1700/Gpc³ /yr) than that of local, neutrinoobservable SN (~1/50 yr).
- Both can give excellent timing information with early-warning system (<u>AMON/SNEWS</u>).

Conclusions

- An exciting era of Multi-messenger Astronomy.
- Great for both Astrophysics and Particle Physics.
- Multi-messenger probes of (B)SM Physics, e.g.
 - Decaying Dark Matter
 - Resonances (p meson, new scalars/vectors)
 - New Matter Effects
 - Nature of Neutrino Mass
 - Light Mediators (ALPs, dark photons, Z',...)
- New windows of opportunity into the BSM world.

