

Probing BSM Physics with Multi-Messenger Astronomy

Bhupal Dev Washington University in St. Louis

> PPC 2024 IIT Hyderabad

October 16, 2024

A New Era of Multi-Messenger Astronomy

2109.10841

Compact Object Mergers

neutrinos

See talks by J. Ellis and S. Bose

Active Galaxies and Tidal Disruption Events

See talks by D. Hooper, S. Agarwalla, and S. Rakshit

Great news for both Astrophysics and Particle Physics.

Outline

New Multi-Messenger Probes of (B)SM Physics

• Decaying Heavy Dark Matter [Sui, BD, <u>1804.04919</u> (JCAP);

Brdar, BD, Maitra, Suliga (in preparation)]

- New (B)SM Resonances
- [Babu, BD, Jana, Sui, <u>1908.02779</u> (PRL);

Brdar, BD, Plestid, Soni, <u>2207.02860</u> (PLB);

BD, Jana, Porto, <u>2312.17315</u>]

- Pseudo-Dirac Neutrinos
- Axion-like Particles

- [Carloni, Martinez-Soler, Arguelles, Babu, BD, 2212.00737 (PRDL);
 - BD, Machado, Martinez-Soler, 2406.18507]

[BD, Fortin, Harris, Sinha, Zhang, 2305.01002 (PRL) and work in progress]

HENs: Multi-Messenger Connection

$$E_{\gamma}^2 \Phi_{\gamma} \simeq \left. \frac{4}{K} E_{\nu}^2 \frac{\Phi_{(\nu+\bar{\nu})_{\text{tot}}}}{3} \right|_{E_{\nu}=0.5E_{\gamma}}$$

Meszaros 1708.03577 (ARNPS)

- IceCube best-fit in tension with gamma-ray constraints.
- Alternatives: Broken power-law, 2-component flux, neutrinophilic BSM contribution

Decaying Heavy Dark Matter

Mild preference for a decaying dark matter component over purely astrophysical unbroken power-law flux Sui, BD 1804.04919 (JCAP)

For a recent update, see Fiorillo, Valera, Bustamante, Winter 2307.02538 (PRD)

New SM Resonances with UHE Neutrinos

Accessible at neutrino telescopes!

Brdar, BD, Plestid, Soni, 2207.02860 (PLB)

New BSM Resonances with UHE Neutrinos

Probing the Nature of Neutrino Mass

- What if there is no signal in NDBD experiments?
- Time to think about alternative probes.

What do we know from Theory?

- Simplest possibility: Add SM-singlet Dirac partners ν_R to write Dirac mass.
- Also allows for a Majorana mass term $M_R \bar{\nu}_R^c \nu_R$.

$$M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix}$$

- If $M_R = 0$, lepton number is preserved and neutrinos are **Dirac**.
- If $M_R \neq 0$, neutrinos are Majorana.
- If $||M_R|| \ll ||m_D||$, neutrinos are **pseudo-Dirac** (small active-sterile mass splitting).
- **But isn't it more natural to have** $||M_R|| \gg ||m_D||$ (seesaw)?

[Minkowski (PLB '77); Mohapatra, Senjanovic (PRL '80); Yanagida '79; Gell-Mann, Ramond, Slansky '79]

• Maybe, but $||M_R|| \ll ||m_D||$ is a logical possibility too.

[Wolfenstein (NPB '81); Petcov (PLB '82); Valle, Singer (PRD '83); Kobayashi, Lim (PRD '01)]

Any model of Dirac neutrinos with Planck-suppressed operators would predict pseudo-Dirac neutrinos.

How to probe Pseudo-Dirac Neutrinos?

Oscillation effects are suppressed, unless L and E are such that $\delta m^2 L/E \sim 1$.

10

Here comes Multi-Messenger Neutrino Astronomy

IceCube Collaboration, <u>2211.09972</u> (Science); <u>1807.08794</u> (Science). Padovani *et al.*, <u>2405.20146</u> (Nature Astron.)

A New Probe of Pseudo-Dirac Neutrinos

Carloni, Martinez-Soler, Arguelles, Babu, BD, 2212.00737 (PRDL)

First IceCube Constraints on Pseudo-Dirac Neutrinos

Carloni, Martinez-Soler, Arguelles, Babu, BD, 2212.00737 (PRDL)

Energy-dependent Flavor Triangles

 $\begin{aligned} \text{CvB matter effect:} \quad V_{\nu_{\alpha}} &= \sqrt{2}G_F (1 + \delta_{\alpha\beta}) (n_{\nu_{\beta}} - n_{\bar{\nu}_{\beta}}) \\ P_{\alpha\beta} &= \frac{1}{2} \sum_{j} |U_{\alpha j}|^2 |U_{\beta j}|^2 \left[1 + \cos 2\tilde{\theta}_j^i \cos 2\tilde{\theta}_j^f \cos \left(\frac{\delta m_j^2 L_{\text{eff}}}{4E_{\nu}} \right) + \sin 2\tilde{\theta}_j^i \sin 2\tilde{\theta}_j^f \cos \left(\int dx \frac{\delta \tilde{m}_j^2 L_{\text{eff}}}{4E_{\nu}} + \frac{\delta m_j^2 L_{\text{eff}}}{4E_{\nu}} \right) \right]. \end{aligned}$

BD, Machado, Martinez-Soler, 2406.18507

MSW Resonance in Hidden Neutrino Sources

Column density $N_{\rm H} = \int n_e dr \ge \sigma_T^{-1} \simeq 1.5 \times 10^{24} \, {\rm cm}^{-2}$ corresponds to unity optical depth.

$$\hat{O}_{\overline{2}}G_F n_e^{\text{res}} = \frac{\Delta m_{i1}^2}{2E_c} \cos 2\phi_{1i}$$

Dighe, Smirnov, <u>9907423</u> (PRD)

Can drastically change the flavor composition of HENs.

 Maybe the reason why most of the HEN sources are unknown.

Flavor Matters but Matter Flavors HENs

Vacuum Oscillations (NO)	
π -decay	$(1/3, 2/3, 0)_S \rightarrow (0.30, 0.37, 0.33)_{\oplus}$
μ -damped	$(0,1,0)_S ightarrow (0.17,0.47,0.36)_\oplus$
<i>n</i> -decay	$(1,0,0)_S ightarrow (0.55,0.17,0.28)_\oplus$
Matter Effect (NO), pp production	
π -decay	$(1/3, 2/3, 0)_S \rightarrow (0.34, 0.33, 0.33)_{\oplus}$
μ -damped	$(0,1,0)_S ightarrow (0.34,0.33,0.33)_\oplus$
n-decay	$(1,0,0)_S ightarrow (0.67,0.08,0.25)_\oplus$
Matter Effect (NO), $p\gamma$ production	
π -decay	$(1/3, 2/3, 0)_S \rightarrow (0.23, 0.40, 0.37)_{\oplus}$
μ -damped	$(0,1,0)_S ightarrow (0.50,0.20,0.30)_\oplus$
n-decay	$(1,0,0)_S ightarrow (0.67,0.08,0.25)_\oplus$

BD, Jana, Porto, <u>2312.17315</u>

- Might be the only way to probe heavily Compton-thick neutrino sources with no electromagnetic counterparts.
- Important implications for modeling of cosmic X-ray background, black hole growth and galaxy evolution.

GW170817: Another Multi-Messenger Frontier

ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LWA, ATMA, OVRO, EVN, e-MERLIN, MeerKAT, Parkes, SRT, Effeisberg

10-2

-100 -50

0 50

1-1. (s)

10

100

10-1

t-t_ (days)

Supernova vs NS Merger: Which is Better?

Conclusions

- An exciting era of Multi-messenger Astronomy.
- Great for *both* Astrophysics and Particle Physics.
- Multi-messenger probes of (B)SM Physics, e.g.
 - Decaying Dark Matter
 - Resonances (p meson, new scalars/vectors)
 - New Matter Effects
 - Nature of Neutrino Mass
 - Light Mediators (ALPs, dark photons, Z',...)
- New windows of opportunity into the BSM world.

