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Parameter inference/optimisation

Cosmological model  ℳ

Parameters  𝜃

For instance:

Standard LCDM

𝜃 = (𝜔b, 𝜔cdm ,H0, 𝜏, As, ns)

or

LCDM + Neff

𝜃 = (𝜔b, 𝜔cdm ,H0, 𝜏, As, ns, Neff)

etc.
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Parameter inference/optimisation

Cosmological model  ℳ

Parameters  𝜃
Theoretical prediction
(CMB angular power spectra)Boltzmann code

(CAMB/Class)

Likelihood
ℒ(𝒟|𝜃, ℳ)

Data  𝒟 

Probability of the data given the model 
and specific values of the parameters

For uncorrelated Gaussian measurements:
data

error

theory



Parameter inference/optimisation

Cosmological model  ℳ

Parameters  𝜃
Theoretical prediction
(CMB angular power spectra)

Likelihood
ℒ(𝒟|𝜃, ℳ)

Posterior probability
𝒫(𝜃|𝒟, ℳ)

Data  𝒟 

Prior 𝜋(𝜃|ℳ) 

Boltzmann code
(CAMB/Class)

Bayes’ Theorem



Parameter inference/optimisation

Cosmological model  ℳ

Parameters  𝜃
Theoretical prediction
(CMB angular power spectra)

Likelihood
ℒ(𝒟|𝜃, ℳ)

Posterior probability
𝒫(𝜃|𝒟, ℳ)

Select next 𝜃

to evaluate 𝒫 at 

Data  𝒟 

Prior 𝜋(𝜃|ℳ) 

Boltzmann code
(CAMB/Class)

For instance:

• Grid scan

• MCMC

• Nested sampling

• …



Parameter inference/optimisation

Cosmological model  ℳ

Parameters  𝜃
Theoretical prediction
(CMB angular power spectra)

Likelihood
ℒ(𝒟|𝜃, ℳ)

Posterior probability
𝒫(𝜃|𝒟, ℳ)

Data  𝒟 

Prior 𝜋(𝜃|ℳ) 

Boltzmann code
(CAMB/Class)

termination
criterion

Parameter constraints
(best-fits, means, variances, etc.)



The usual approach: Markov chain Monte Carlo

• Basic idea: random walk in parameter space that explores 𝒫(𝜃) 

posterior
isocontours

Markov chain:

Density of samples 
proportional to 𝒫(𝜃) 



The usual approach: Markov chain Monte Carlo

http://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=standard

[Feng et al., Github]

Metropolis-Hastings algorithm:
1. Start at point 𝜃 in parameter space

2. Save 𝜃 to Markov chain

3. Propose a step to a new point 𝜃’

4. Decide whether to accept the proposal and take the step:

 If 𝒫(𝜃’) ≥ 𝒫(𝜃), accept the proposal

    If 𝒫(𝜃’) < 𝒫(𝜃), accept the proposal with a probability p = 𝒫(𝜃’)/𝒫(𝜃), otherwise reject

5. If step was accepted set 𝜃’ = 𝜃

6. Go to 2.

[Metropolis et al. (1953)]

Animated illustration:

http://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=standard


Pros and cons of MCMC

+ easily implemented

 + easily parallelisable

 + essentially zero overhead

 + mild scaling of number of required samples with dimension N of 
parameter space (power law ∼N𝛼 rather than exponential)

 + works great for near-Gaussian posteriors (most of cosmology)

 o not very good at finding the maximum

 o typically requires 𝒪(104) function evaluations for N = 𝒪(10)

 − struggles with complicated (multi-modal, non-Gaussian, non-linearly 
correlated, etc.) posteriors

 − not very smart: most of the information is ignored!



Bayesian optimisation

Step 1: Regression

Guess the shape of the 
function based on known 
function values (“data”)

Step 2: Selection

Decide at which point to 
evaluate the next function 

value 



Gaussian Process Regression (GPR)

• Non-parametric probabilistic regression model



Gaussian Process Regression (GPR)…
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Input

• data points
• covariance of data

Output
• interpolation
• uncertainty

…is a non-parametric probabilistic regression model
[Rasmussen & Williams 2006]



Gaussian Process Regression



Where to draw the next sample?

Exploration? Exploitation?



Where to draw the next sample?

Exploration? Exploitation?

Define an acquisition 
function dependent on 

GPR mean and uncertainty

Pick value that maximises 
acquisition function

For example:
Expected Improvement



Bayesian optimisation
Expected improvementGaussian Process Regression iteration #

uncertainty

GPR mean

true function

data
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An example application: inflation models with 
modulated primordial power spectra

[Planck inflation 2018]

using nested sampling, O(105) 

samples

red dots: our results with BO

• Two orders of magnitude fewer 

function evaluations

• Much better at finding global 

and local extrema

[JH & Wons, 2021]



BayOp – not only good for optimisation

1700 samples

8 frequency bins

… it also learns the global shape of the function

[JH & Wons, 2021]



Pros and cons of Bayesian Optimisation

+ high efficiency

 + excellent at finding global maximum

 + very good at determining overall shape, profiles of functions

 +  works even for very nasty (non-Gaussian, multimodal, etc.) functions

 + does not require user input or fine-tuning of settings to work

 − may struggle with higher-dimensional problems (D ≳ 10)

 − non-trivial computational overhead (CPU time, memory)



Bayesian optimisation for parameter inference

• Learn shape of posterior probability density

• Replace (potentially expensive) calculation of theoretical 
prediction and likelihood evaluation with (cheap!) GPR 
emulation

• Implemented in a Python package: GPry [El Gammal et al., 2022]



But this assumes we know the right model…



Model selection: Bayesian method

Probability of model ℳ
given the data 𝒟

Bayesian evidence

Comparing two models:

Bayes factor B12

“Model ℳ1 is B12 times more 
probable than ℳ2”



Model selection: Bayesian method

Bayesian evidence

• Integral over entire parameter space

• Rewards models that make risky predictions and get it right 
over generic models that can fit anything

• Natural implementation of Occam’s razor:
Numquam ponenda est pluralitas sine necessitate

Plurality must never be posited without necessity

(Don’t make things unnecessarily complicated)



Bayesian model selection

• Multi-dimensional integration is a challenging task

• Standard approach: Nested sampling algorithm

• typically requires 𝒪(105-106) function evaluations for features 
models 

[Skilling 2004, Feroz et al. 2013, Handley et al. 2015]

This is even harder than parameter inference

Can Bayesian Optimisation help?



Evidence calculation with Bayesian optimisation

• Goal is to select next function value to be evaluated in such a 
way that it maximises the expected reduction in uncertainty of 
the integral

• Use a different acquisition function: Integrated Mean Square 
Prediction Error (IMSPE)

Pretend to take a sample at 𝜃, 
then do a new GPR

Very convenient: 
gives estimate of the uncertainty of the evidence integral 

GPR uncertainty 



Evidence calculation with Bayesian optimisation

• Our code still in development…

• Code based largely on existing Python frameworks (BoTorch)

• Uses clever method for dealing with hyperparameters and 
acquisition function maximization (Sparse Axis-Aligned Subspace 
Bayesian Optimisation (SAASBO))

• Sampling from hyperparameter space PDF instead of maximizing 
(overengineering? – but more Bayesian in spirit) 

[Balandat et al. (2019)]

[Eriksson & Jankowiak (2021)]







Conclusions

• Bayesian optimisation is a machine-learning technique for 
extremising unknown functions

• It can also be applied to cosmological parameter estimation and 
Bayesian model comparison

• Very efficient: in our examples it requires factor O(100) fewer 
function evaluations compared to random sampling-based 
methods

• Most useful for expensive-to-calculate likelihoods and complicated 
posterior distributions

• Paper and code for Bayesian evidence calculation out soon!
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