Zeeshan Ahmed, SLAC/Stanford PPC 2024, Hyderabad, October 17, 2024

Investigating cosmic origin and evolution with the Cosmic Microwave Background

SERN FREE RES

Statistical information from CMB Suggests primordial seeds of structure

Figures from Planck Legacy Release 2018

Inflation seeds primordial structure Scalar field(s) for exponential expansion

Figures from Baumann/Peiris 2009, Astronomy Today and Planck 2018

Inflation seeds primordial structure Scalar field(s) for exponential expansion

Inflation seeds primordial structure Scalar field(s) for exponential expansion

Planck 2018

Inflation models generically predict primordial gravitational waves (PGWs)

r ≡ *At* A_{s} Tensor-to-scalar Ratio

 $V^{1/4} = 1.04 \times 10^{16}$ GeV *r* Inflation energy scale

Figures from ESA/Planck and JPL/BICEP

 $P_{s}(k) \approx A_{s} k^{n_{s}-1}$ $P_t(k) \approx A_t k^n$ Tensor/GW $\frac{1}{5}c$ alar $\frac{1}{10}$ density waves

PSfrag replacements

PSfrag replacements

In standard ΛCDM only Emodes are present when CMB released. Help constrain ΛCDM, light relics

PSfrag replacements

State of CMB measurements and constraints

7 *Plot from Federico Bianchini*

Light relics Relativistic thermal particles in early universe imprint the CMB

0.027

 $\begin{array}{c} 0.054 \ 0.047 \end{array}$ *This includes many BSM sterile neutrinos, axions, dark radiation.*

Light particles that were ever in thermal equilibrium with the primordial plasma will affect the mass-energy budget and leave an imprint in the CMB.

CMB weak lensing Photons deflected by structure. Can reconstruct deflections

For e.g., lensing potential map Planck 2018 Legacy Release

 -0.0016

Can reconstruct deflections from T, E and B to get lensing potential

Figures from ESA and Planck Legacy Release 2018

 $T^{lensed} = T^{0}(\hat{n} + \nabla \phi)$ $\hat{\phi}_{\mathbf{L}}^{XY}=\frac{1}{R_L^{XY}}\int d^2\boldsymbol{\ell}W_{\boldsymbol{\ell},\boldsymbol{\ell}-\mathbf{L}}^{XY}\bar{X}_{\boldsymbol{\ell}}\bar{Y}_{\boldsymbol{\ell}-\mathbf{L}}^*$ For e.g., ACT DR6 lensing mass map**Mass Density** Low (voids) High 0.0016

Madhavacheril et al. (ACT Collaboration), Arxiv:2304.05203

$T(\hat{n})$ ($\pm 350 \mu K$)

$E(\hat{n})$ $(\pm 25 \mu K)$

$B(\hat{n})$ ($\pm 2.5 \mu K$)

$T(\hat{n})$ ($\pm 350 \mu K$)

$E(\hat{n})$ $(\pm 25 \mu K)$

$B(\hat{n})$ ($\pm 2.5 \mu K$)

(no primordial B-modes)

CMB lensing helps weigh neutrino masses

Neutrinos contribute only **0.5%** of the matter but gravitationally suppress LSS by **4%**

Negligible neutrino mass

Very large neutrino mass

Slide adapted from Frank Qu

Viel et al, 2013

Abazajian et al, 2015

- Standard GR
- Dominated by Cold Dark Matter
- Constant Dark **Energy**

"Predicted, indirect H0 or S8" 1.Fit LCDM model to CMB at z~1100 2.Predict structure growth to z \sim 1-2 Assumptions:

Early Universe v. Late Universe tests of Hubble (H0) and Large-scale structure growth (S8)

"Direct H0" 1.Measure H0 via SNIa, variables 2.Compare with prediction

Ground-based CMB experiments Observe in mm-wave windows from high, dry deserts, using superconducting noise-

limited sensors.

Compact receivers for inflation, high-resolution for cosmology, large-scale structure and its evolution

-
-
-
-
-
- - -

Incoming CMB power deposited on TES bolometer by antenna or feedhorn-coupled orthomode transducer

AdvACT

15

TES bolometer measures that power, and converts to a current we measure

bolometer by antenna or feedhorn-coupled orthomode transducer

. **.** .

J. Ullom et al., (2015) Supercond. Sci. Technol. 28

Sensitivity comes from operating on the very sharp superconducting phase transition at ~0.1-0.3K

TES bolometer measures that power, and converts to a current we measure

bolometer by antenna or feedhorn-coupled orthomode transducer

How we measure *r*

BICEP Array $\sigma(r) \sim 0.01$ (2019-2027) $\sigma(r) \sim 0.002$

BICEP3

 $(2015+)$ $\sigma(r) \sim 0.01$
95 GHz

Keck Array (2012-2019)

BICEP2 (2010-2012)

Compact CMB cameras with increasing sensitivity to inflation BICEP program 2006-present

~500 sensors ~2500 sensors in five BICEP2-like cameras

Generation 2 **Generation 3**

~2500 sensors

~30k sensors in four BICEP3-like cameras

~100 sensors

BICEP1 (2006-2008) 100, 150 GHz

Generation 1

Right ascension [deg.]

Deepest CMB polarization maps (BK18) Jointly constrain r, CMB lensing amplitude, dust, synchrotron

E maps are bright and correlated; robust detection of LCDM E-modes

Deepest CMB polarization maps (BK18) Jointly constrain r, CMB lensing amplitude, dust, synchrotron

PRL 127, 151301 (2021) **Deepest CMB polarization maps (BK18) Jointly constrain r, CMB lensing amplitude, dust, synchrotron** B maps are increasing in E maps are bright and 1 1 1 1 correlated; robust detection brightness; detection of BK15 baseline BK18 baseline of LCDM E-modes polarized galactic dust 0.8 **E-mode B-mode** Dust amplitude (μK^2) \blacksquare L peak 。
1
フ 0 0 0 95GHz E $\pm 1.5 \mu$ K 1 1.5 2 −4 −3 −2 −1 0 1 95GHz B \pm 0.3 μ K β d β s 0.4 1 0.2 0 7.5 0 \curvearrowright \sim −1 −0.5 0 \mathcal{C} K *K* µ μ ebutilqma ta 6 *μ* \smile 1 Dust amplitude 150GHz E \pm 1.5 μ K 150GHz B \pm 0.3 μ K 4.5 3 0 1.5 \overline{a} −1 −0.5 0 α 0 \curvearrowright 7.5 $\dot{\mathcal{C}}$ $\mathcal{N}_{\mathcal{A}}$ *K* K \blacktriangleright *μ* ync amplitude (*µ* 6 \smile Sync amplitude 220GHz B $\pm 0.3 \mu$ K 220GHz E \pm 1.5 μ K 4.5 3 1.5 ŕr 0 0.16 0 2 4 6 8 10 0 0.04 0.08 0.12 0 2 4 6 8 $\sum_{n=1}^{\infty}$ Dust amplitude (μK^2 \int Sync amplitude (μK^2) r Tensor-to-scalar ratio (*r*)

Best constraints on inflation parameters Single-field slow-roll inflation models with monomial potentials* ruled out

*= with canonical kinetic terms

BICEP/Keck Collaboration, PRL 127, 151301 (2021)

Advanced Atacama Cosmology Telescope (AdvACT) Wide-area, high-resolution survey ended 2023

~3000 detectors

Material from Suzanne Staggs

Cryostat Pulse Tube

4K Copper Tower PA1 Optics Tube

> 4K Cold Plate 300K-40K G10 Suspension Window

Signal-dominated mass map covering a quarter of the sky

ACT DR6 high-fidelity lensing maps

- Gravitational Lensing Convergence $\kappa \propto$ mass density
- 2017-2021 Advanced ACT DR6 observations
- Covers 9400 sq deg, -25% of the sky
- Detection at 43 σ
- 2x SNR per mode compared with *Planck*

- We combine with CMB anisotropies which predict lowredshift clustering amplitude
- Translate observed low-redshift clustering amplitude to suppression caused by massive neutrinos
- **m<0.13 eV 95% c.l.** with BOSS BAO

Compare to:

(m<0.14 eV; Planck lensing)

(m<0.16 eV; no lensing, only CMB+BAO)

Constraining neutrino mass sum

● **m<0.072 eV with DESI BAO DESI Collaboration 2024**

See also *Shao et al [2409.02295](https://arxiv.org/abs/2409.02295)* and *Farren, [Krolewski,](https://arxiv.org/search/?searchtype=author&query=Krolewski%2C+A) Qu, Ferraro et al [2409.02109](https://arxiv.org/abs/2409.02109)* for more recent neutrino mass constraints

Slide from Frank Qu

Arxiv:2304.05203

2007-11: SPT-SZ

 960 detectors 95,150,220 GHz

2018-now: SPT-3G

~16,200 detectors

95,150, 220 GHz *+polarization*

Slide from Federico Bianchini

10-meter telescope sub-arcmin resolution

2012-16: SPTpol

 1600 detectors 95,150 GHz *+polarization*

South Pole Telescope Wide-area, high-resolution survey

South Pole Telescope Delensing and cosmology from ~few months of 2018 data

Material from Yuuki Omori and Federico Bianchini

- H_0 and S_8 consistent with the cosmology inferred from Planck primary CMB measurements
- \cdot $\sigma(H_0) \sim 1.5$ km/s/Mpc when combined with BAO (2%) measurement!)
- Good consistency with LCDM (deviations <1σ)

$\frac{10}{24}$ $\frac{2019}{2019}$ 2020 2021 2022 2023 2024 2025 2026 2027 **Substantially improved results in ~few weeks**

Pan et al (SPT Collaboration) 2308.11608

The Simons Observatory (2024+)

Simons Observatory

6 meter cross-dragone \rightarrow map 50% of sky **30,000 detectors**

 3 SATs \rightarrow map 15% of sky 0.5 meter apertures **30,000 detectors**

Bienes Nacionales

UHF: 220/280 GHz Six Optical Bands LF: 30/40 GHz MF:90/150 GHz

²⁶ *Site renderings from CMB-S4 collaboration*

Target **~3% of the cleanest sky** for deep integration with $~10-20x$ 0.5-m small-aperture telescopes to target inflation

Target **~60% sky**, from the **Atacama**, for wide area survey with ~3-5 high-resolution telescopes to target large-scale structure, particle physics, CMB lensing

~500,000 detectors

CMB-S4 Collaboration, arXiv:1610.02743 arXiv:1706.02464 arXiv:1907.04473

The CMB science of the 2020s and 30's Broad appeal to the HEP and astronomy communities

Inflation *via B spectrum* $r > 0.003(5\sigma)$

Light relic search *via T, E spectra* $\Delta N_{\text{eff}} \leq 0.06$ (2*σ*)

 Neutrino masses *via tSZ clusters, lensing (+LSST, DESI) σ*(∑*mν*) ∼ 0.025 eV

Galaxy evolution and baryonic feedback *via SZ mapping of gas pressure and momentum*

 $tSZ =$ thermal SZ kSZ = kinetic SZ SZ= Sunyaev Zeldovich effect

mm-wave transient survey GRBs, fast transients, AGN

Reionization mapping *via kSZ*

Dark Energy, Growth of structure (*σ*₈) *via kSZ, lensing, and tSZ clusters (~70,000)*

> Galactic science, Magnetic fields, ISM

Summary

• The Cosmic Microwave Background provides an early universe view of cosmology and particle physics. It also provides a backlight to cosmic structure which probes intermediate redshifts and provides more modes to constrain parameters.

• The tightest constraints on tensor-to-scalar ratio come from BICEP. Parameter space exploration will continue with BICEP and upcoming inflation experiments.

• Exciting results to come over the next decade from BICEP, SPT and Simons $=$ Observatory.

• The CMB contains information about light relics, neutrino mass and cosmological parameters. CMB weak lensing is starting to offer a new probe for many of these measurements. ACT and SPT are producing new parameter constraints with CMB lensing.

• Subsequently, CMB-S4 will provide a substantial leap in sensitivity.

BICEP program designed to maximize sensitivity

~10,000ft, ~0.25mm precipitable water vapor High atmospheric transmission in mm-wave windows

6 months of cold, stable winter sky (no diurnal variation) Long periods of uninterrupted integration

ApJ 927 77 (2022)

BICEP program designed to control systematic effects

Extensive characterization of instrument

BICEP/Keck Collaboration, ApJ 927 77 (2022)

and WMAP

Different spectral behavior

and WMAP

How can CMB lensing help clarify the S8 tension? Cross correlation of CMB lensing and galaxy lensing probes

Can provide complementary insight into systematics and test redshift or scale dependence of any new physics

How can CMB lensing help clarify the S8 tension? Cross correlation of CMB lensing and galaxy lensing probes

Can provide complementary insight into systematics and test redshift or scale dependence of any new physics

Why look for PGW?

Compelling parameter space explores effective inflaton field range $\Delta\phi$ in units of Planck scale, M_{P}

Need 20x reduction in $\sigma(r)$ to cover **this parameter space!**

A detection in this regime would provide a significant empirical clue about how quantum gravity works

Plot from CMB-S4 Collaboration

Measuring Hubble with lensing

South Pole Telescope (SPT)

Photo credit: Aman Chokshi

• **In 2017, SPT-3G survey began** measuring the **cosmic microwave background (CMB).** Data has broad

science reach for cosmology, astronomy, & HEP:

- World-leading constraints on cosmic Inflation with **BICEP** and **South Pole Observatory, SPO**
- New constraints on **dark matter** and **neutrino** density
- Discovering the earliest formed **galaxies** and **clusters**, and new classes of **astrophysical transients**.
- Physics of **Black Holes** and general relativity with **Event**

<https://pole.uchicago.edu/> Horizon Telescope (EHT)

[Prabhu et al. \(arXiv: 2403.17925\)](https://arxiv.org/abs/2403.17925)

SPT-3G will improve CMB constraints on many individual parameters by ~2-3x

SPT-3G 10,000 deg2 survey

Slide from Brad Benson

Key Science Goals from the Simons Observatory

- **Threshold Goals** for the Simons Observatory including the Advanced Simons Observatory.
	- Nine years of observations.

• **LAT/LATR:**

- 20,000 sq.deg.
- 2.5 μK-arcmin
- **SATs (x3)** (not including planned expansion)
	- 15% of the sky.
	- $\sigma(r) = 0.002$ (0.0012 Goal)

Updated White Paper on Advanced SO goals coming soon!

The ultimate ground-based Cosmic Microwave Background survey experiment

- Designed for transformational advances in our understanding of cosmic acceleration, the dark sector, and discoveries in the mm-wave sky
- *21 countries. 32% Early Career. 30% international*
- Ranked highly by 2023 P5, Astro2020, 2015 NSF Antarctic Strategic Vision

• Broad participation of US and international CMB and cosmology communities and the High Energy Physics community. *500 members from 119 institutions,*

17th CMB-S4 Collaboration meeting August 2023

$\frac{1}{2}$ CMBS4 **The ultimate ground-based CMB survey experiment**

A US DOE-NSF joint project to build **12 CMB telescopes at the South Pole and in Chile** incorporating ~**500,000** photon-noise-limited sub-Kelvin, superconducting detectors. **First light in 2033**

Endorsed by 2023 P5, and by Astro2020

Site renderings from CMB-S4 collaboration

CMB-S4 Collaboration, arXiv:1610.02743 arXiv:1706.02464 arXiv:1907.04473

\mathbf{A} \mathbf{A}

Power spectrum plot from Federico Bianchini

r and Ne^f plots from CMB-S4 Collaboration

Power spectrum plot from Federico Bianchini

r and Ne^f plots from CMB-S4 Collaboration