The Neutrino Roof: Single-Scatter Ceilings in Dark Matter Direct Searches

Punchline for experts

Raj & Mondal, 2406.17015

Dark reality

CMB

Direct detection: the beginning

PHYSICAL REVIEW D

VOLUME 31, NUMBER 12

15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

Preview: modern searches

Direct detection status

Bird's-eye view

An educated guess

The four frontiers

15

fix: electronics, materials science

(cm²)

Hunting even rarer dark matter

Theoretical appeal

Super-heavy states appear in theories of grand unification of forces.

Can make them in early universe:

- * Hawking radiation from primordial black holes Hooper, Krnjaic, McDermott (2019)
- * Gravitationally @ final stages of inflation Chung, Crotty, Kolb, Riotto (2001), Harigaya, Lin, Lou (2016)
- * Pre-heating: parametric resonance —> rapid decay of inflaton Giudice, Peloso, Riotto, Tkachev (1999), Bai, Korwar, Orlofsky (2020)
- * Thermally! *Kim, Kuflik (2019)*

Heavy, strong, stable: recent wave

Electroweak symmetric monopoles Bai, Korwar, Orlofsky 2005.00503

Electroweak symmetric solitons Bai, Jain, Ponton 1906.10739

Asymmetric dark matter nuggets Coskuner, Grabowska, Knapen, Zurek 1812.07573 *Charged primordial black holes* Lehmann, Johnson, Profumo, Schwemberger 1906.06348

Dark blobs Grabowska, Melia, Rajendran 1807.03788

> *Colored relics* Gross, Mitridate, Redi, Smirnov, Strumia 1811.08418

Heavy dark baryons Davoudiasl, Mohlabeng 1809.07768

Heavy dark skyrmions Berezowski, Dick Sep 2019

Why now? Can detect them now!

Today's dark matter detectors

← 50 cm →

DEAP-3600

Multiscatter signatures essential

scatters per transit = σ x target number density x path length

- Not sought any more. Would double the reach of all current experiments!

a large range of masses for strongly interacting dark-matter particles is probably already ruled out by the simple observation that NaI does not "glow in the dark."

(Q1) Going to the Planck mass

multiscatter signatures: waveforms of energy deposition in liquid argon

Landscape of ultraheavy dark matter

Snowmass whitepaper co-ordinated with Dan Carney; SciPost Phys Core 2023.

ongoing study with Harsh Aggarwal, IIT-KG

actual single-scatter ceiling
, set by Poisson fluctuations
in hits-per-transit ("multiplicity")

expect (from optical depth)

could observe

Why care?

(i) identify correctly where "WIMP" searches apply!

(ii) Poisson fluctuations => overlap with multi-scatter regions=> cross-confirmation of search results

>gets tricky & interesting in the presence of (imminent) neutrino background!

At "ghostly frontier", problem already tackled: "*neutrino floor*" by analogy, we have "*neutrino roof*"

"WIMP" event rate familiar from literature

.

"WIMP" event rate familiar from literature

		$M_{ m fid} imes t_{ m exp}$			
target	detector	$(ton \times yr)$	$E_{\rm R}$ (keV)	$\epsilon_{ m NR}$	$(N_{ m B}\pm\sigma_B,N_{ m obs},N_{ m exp}^{ m 90CL})$
	DARWIN/XLZD [21]	40×5	[5, 35]	0.50	(4.1, 4.1, 4.0)
	PANDAX- xT [23]	34.2×5.85	[4, 35]	0.50	$(48\pm 6.9, 48, 11.4)$
xenon	XENON1T [19]	1.3 imes 0.76	[10, 40]	0.80	$(7.4 \pm 0.6, 14, 12.8)$
$2.94~{ m g/cm^3}$	XENONnT [34]	4.18×0.26	[10, 40]	0.80	$(2.03\pm0.16,3,4.7)$
$^{128}1.9\%,^{129}_{ m SD}26.4\%,^{130}4.1\%$	LZ [35]	5.5 imes 0.16	[5, 50]	0.90	(-,-, 4.4)
$^{131}_{ m SD}21.2\%,^{132}26.9\%,$	PANDAX-II [36]	0.33 imes 1.1	[10, 30]	0.85	$(40.3\pm3.1, 38, 7.8)$
$^{134}10.4\%,\ ^{136}8.9\%$	PANDAX-4T [37]	2.67×0.24	[30, 90]	0.75	$(9.8\pm0.6,6,0.8)$
	KILOXENON	40×25	[5, 35]	0.50	$(20.6\pm6.1,20.6\substack{ imes2\\ \pm 2},10.9\substack{+6.3\\ -6.7})$
	MYRIAXENON	$10^3 \times 10$	[5, 35]	0.50	$(206\pm44,206\substack{ imes 2\\ \div 2},60\substack{+44\\ -45})$
	DarkSide-20k [24]	20×10	[30, 200]	0.90	(3.2, 3.2, 3.7)
	Argo [25]	300×10	[55, 100]	0.90	$(15.6\pm 5,\ 15.6,\ 6.4)$
argon	DarkSide-50 [38]	0.031×1.46	[80, 200]	0.70	(0, 0, 2.3)
$1.40~{ m g/cm^3}$	DEAP-3600 [39]	0.824×0.63	[70, 100]	0.24	(0, 0, 2.3)
$^{36}0.33\%,^{38}0.06\%,^{40}99.6\%$	MYRIARGON	300×33.3	[55, 100]	0.90	$(51.5 \pm 12.6, 51.5 \substack{ imes 2 \\ \pm 2}, 19.7 \substack{ imes 13.1 \\ -13.2})$
	DECIMEGARGON	$10^4 \times 10$	[55, 100]	0.90	$(515\pm106,515^{ imes2}_{\pm2},174^{+106}_{-106})$

* noble detector masses motivated by $0\nu\beta\beta$ -driven research & DUNE: see 2404.19050, 2301.11878, ...

Raj & Mondal, 2406.17015

Conclusion

Ceilings are as important as floors!

(Q1) Identifying multiscatterers

PICO-60

Track of bubbles

Stereo cameras can image up to 100 bubbles (mm resolution)

- Background ~ 0 (from daughter neutrons of surrounding material & coincident electron recoils) $_{45}$

(Q1) Going to the Planck mass

DEAP-3600 @ SNOLAB

FIG. 3. Probability of DM with $m_{\chi} = 10^{18} \text{ GeV}/c^2$ populating each ROI and surviving all cuts at varying $\sigma_{T\chi}$.

ROI	PE range	Energy [MeV]	$\rm N_{peaks}^{min}$	$\mathrm{F}_{\mathrm{prompt}}^{\mathrm{max}}$	μ_b	$N_{\rm obs.}$
1	4000-20 000	0.5 - 2.9	7	0.10	$(4 \pm 3) \times 10^{-2}$	0
2	20000 – 30000	2.9 - 4.4	5	0.10	$(6 \pm 1) \times 10^{-4}$	0
3	30000 - 70000	4.4 - 10.4	4	0.10	$(6 \pm 2) \times 10^{-4}$	0
4	$70000 - 4 \times 10^8$	10.4 – 60000	0	0.05	$(10 \pm 3) \times 10^{-3}$	0

FIG. 2. Simulated F_{prompt} and N_{peaks} distributions for DM with $m_{\chi} = 10^{18} \text{ GeV}/c^2$ for various $\sigma_{T\chi}$.

Reconstructing dark matter velocity vector

Detector resolutions

Detector resolutions

detector uncertainties tiny => smearing negligible => main limitation is statistics! (triumph of experimental progress)

Statistics

SNO+ could potentially collect these many events

different scalings with

detector mass & exposure

Pinpointing mean speed

galactic frame

$$f(v) = \frac{1}{\mathcal{N}}v^2 \exp\left(-\frac{v^2}{v_0^2}\right)\Theta(v_{\rm esc} - v)$$

 v_0 = circular speed = $\sqrt{(2/3)}$ dispersion speed

Pinpointing mean speed

 $\frac{\text{galactic frame}}{f(v)} = \frac{1}{\mathcal{N}}v^2 \exp\left(-\frac{v^2}{v_0^2}\right)\Theta(v_{\text{esc}} - v)$

Testing velocity anisotropies

angular distribution:

Testing velocity anisotropies

dipole coefficient monopole coefficient 200 $N_{\rm DM} = 10^4$ $N_{\rm DM} = 10^4$ *δψ* = 0.01 150 *δψ* = 0.01 150 good Trials Trials $N_{\rm DM} = 5 \, {\rm x10^2}$ angular 100 *δψ* = 0.01 resolution $N_{\rm DM} = 10^2$ $N_{\rm DM} = 5 \, {\rm x} 10^2$ **50** -**δψ =** 0.01 50 *δψ* = 0.01 (smearing $N_{\rm DM} = 10^2$ *δ***ψ** = 0.01 negligible) 0 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 -0.10.0 0.1 0.2 Reconstructed C₀₀ Reconstructed C₁₁ 300 $N_{\rm DM} = 10^4$ $N_{\rm DM} = 10^4$ 200 δψ = *δψ* = 1 250 poor 150 200 Trials 150 Trials angular 100 $N_{\rm DM} = 5 \, {\rm x10^2}$ resolution **δψ** = 1 100 $N_{\rm DM} = 10^2$ $N_{\rm DM} = 5 \times 10^2$ 50 (smearing δψ = 50 $\delta \psi = 1$ $N_{\rm DM} = 10^2$ significant) 0 0.70 0.85 0.90 0.95 0.0 0.65 0.75 0.80 1.00 -0.10.2 0.1 **Reconstructed** C₀₀ Reconstructed C₁₁ **LESSONS:** good statistics => accuracy & precision, J. Bramante, J. Kumar, N. Raj

smearing => anisotropies wash out.