Dark Matter Search in Neutrino Detectors

Kenny CY Ng (吳震宇) The Chinese University of Hong Kong

Super-k

Kenny CY Ng PPC 2024, Hyderabad

Dark Matter identification

• EuCAPT White Paper, arxiv: 2110.10074

One must try everything

Weakly interacting massive particles (WIMPs)

Indirect Detection

- production by
 - SM + SM -> X + X in the early universe
- sets a definite prediction
 - X + X -> SM + SM
 - 10⁻²⁶cm^3/s (simplest case)

Direct Detection

Indirect Detection

Note: this is the Total Cross Section

- 2 to 2, S-wave, spin1/2 majorona DM

Indirect detection

Typical Indirect detection search considers only single Channel

Flux
$$= \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \int \rho^2 d\ell \frac{dN}{dE}$$
 for a specific channel

 $\langle \sigma v \rangle = Br \times \langle \sigma v \rangle_{tot}$

Constraints on total cross section

With only visible channels

Least constraining combination

1805.10305 Leane, Slatyer, Beacom, KCYN

Neutrinos not included!

Neutrino limits

Neutrinos are the least constraining! But perhaps the most important for testing WIMP hypothesis

Towards detecting super-GeV dark matter via annihilation to neutrinos JCAP 08 (2023) 006 [2211.12235]

• L. Salvador Miranda, S. Basegmez du Pree, K.C.Y. Ng, A. Cheek, C. Arina

KM3NeT

 Next-gen water Cherenkov neutrino telescope

- ORCA
- ~ 3.7 Mton
- Off-shore France

- ARCA
- Off-shore Italy
- 2 building blocks, total ~ 1 Gton

KM3NeT

 Northern hemisphere detector, have a good view of the Galactic Center, GC

- Visibility function:
 - Fraction of time that the GC is below horizon
 - ~ 63% at GC

This work

Dark Matter signal

• Dark Matter flux

$$\frac{dI_{\nu}(\psi)}{dE} = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \frac{dN_{\nu}}{dE} \, \int_0^{l_{max}} \rho_{\chi}^2[r(l)] dl$$

• J-factor

•
$$J = \int \rho^2 d\ell$$

- NFW profile
 - The choice is important

$$\rho_{\chi}(r) = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$$

Expected Event rate ber bin KM3NeT Letter of intent

- Effective area
- Angular resolution
 - ARCA: ~ 0.3 degree at 10 TeV
- Energy resolution
 - ARCA: $\Delta \log_{10}(E_{\nu}) = 0.27$ (tracks)

Aiello et al 2103.09885

1601.07459

Expected Event rate ber bin

- Binning in both Energy and Angular
- Two times of the resolution

$$n_{ij} = T_{\rm eff} \int_{i} dE_{\nu} \int_{j} \operatorname{vis}(\Omega) \, d\Omega \frac{dI_{\nu}}{dE_{\nu}} A_{\rm eff} \langle e^{-\tau(E_{\nu},\Omega)} \rangle$$

- T_{eff} = 10 years
- vis(Ω): visibility function
 vs sky position
- A_{eff} detector effective area
- $\langle e^{-\tau} \rangle$ neutrino absorption through energy, only relevant at very high energy

Backgrounds

- Atmospheric neutrinos
 - Honda et al, 1502.03916
 - Sinegovskaya et al, 1407.3591
- Astrophysical neutrinos
 - 10-years Icecube best fit, 1908.09551
 - Results not are sensitive to isotropic diffuse astrophysical neutrinos.

This work 2211.12235

Mock Likelihood analysis

 Atmospheric neutrino + 10 years IceCube isotropic diffuse astrophysical background

This work 2211.12235

Kenny CY Ng PPC 2024, Hyderabad

The uglies

• The result will depends a lot on the profile assumption.

- Galactic plane/center component?
- Diffuse component is fine
- A peak at GC will be confusing

MeV Scale

$\bar{\nu}_e$ flux upper limits

- Inverse Beta Decay
 - $\bar{\nu}_e + p \rightarrow e^+ + n$
- Diffuse $\bar{\nu}_e$ flux upper limits
 - From diffuse supernova neutrinos search

• The "strong" limit is really just dominated by one data point!

Super-K 1311.3738

Inverse beta cross section

- Positrons from IBD does not point
 - Vogel, Beacom 1999

E_{ν}	$\sigma(\bar{\nu}_e p)$	$\langle E_e \rangle$	$\langle \cos \theta \rangle$	E_{ν}	$\sigma(\bar{\nu}_{\epsilon}p)$	$\langle E_e \rangle$	$\langle \cos \theta \rangle$
1.806	0	_	_	8.83	0.511	7.46	-0.015
2.01	0.00351	0.719	-0.021	9.85	0.654	8.47	-0.013
2.25	0.00735	0.952	-0.025	11.0	0.832	9.58	-0.010
2.51	0.0127	1.21	-0.027	12.3	1.05	10.8	-0.007
2.80	0.0202	1.50	-0.027	13.7	1.33	12.2	-0.003
3.12	0.0304	1.82	-0.027	15.3	1.67	13.7	0.0006
3.48	0.0440	2.18	-0.027	17.0	2.09	15.5	0.005
3.89	0.0619	2.58	-0.026	19.0	2.61	17.4	0.010
4.33	0.0854	3.03	-0.025	21.2	3.24	19.5	0.015
4.84	0.116	3.52	-0.024	23.6	4.01	21.8	0.021
5.40	0.155	4.08	-0.023	26.4	4.95	24.4	0.028
6.02	0.205	4.69	-0.022	29.4	6.08	27.3	0.036
6.72	0.269	5.38	-0.020	32.8	7.44	30.5	0.044
7.49	0.349	6.15	-0.018	36.6	9.08	34.1	0.054
8.36	0.451	7.00	-0.016	40.9	11.0	38.0	0.065

Strumia, Vissani astro-ph/0302055

Positron angular distribution from cross section

Super-k + Gd Beacom, Vagin 2004

Super-k Gd project

- SK: 2109.00360
 - 0.01% Gd
- SK: 2403.07796
 - 0.033% Gd

- Could enable the detection of diffuse supernova neutrino background (DSNB)
- 2.3 sigma (Neutrino 2024)

Zhou, Beacom 2024

https://pos.sissa.it/282/982/pdf

Can Neutrons help reconstruct IBD?

Counting variables

$$egin{aligned} E_
u + m_{
m p} &= E_{
m n} + E_e \ E_
u \cos \phi &= p_{
m n} \cos heta + p_e \ E_
u \sin \phi &= p_{
m n} \sin heta \end{aligned}$$

- 2D problem
- 3 equations
- 5 variables

•
$$E_{\nu}$$
 , E_{e} , E_{n} , $heta$, ϕ

- Positron energy is already measured
- Just need one more!
- Neutron angle or neutron momentum

Unfortunately, Neutron diffuse in water

Can Neutron help reconstruct IBD?

- With Qishan Liu@CUHK
- Geant4 simulation
- 0.1% Gd in Water by weight

Neutron momentum 20MeV

50MeV

80MeV

Some neutron directionality remains even after diffusion

Preliminary

Can Neutron help reconstruct IBD?

- Full blind reconstruction difficult
- For targeted search
 - Fixed direction and/or fixed energy (e.g., Dark matter)
 - Using only *neutron capture direction*

Preliminary

Neutron Diffusion

and Capture

Reconstructed neutrino direction Preliminary

The ideal scenario (theoretically best case)

- At low energies, neutron carries most of the direction
- Positrons direction dominates at higher energy
 - Also starts to deviate from quasi-elastic regime

Vertex resolution

• The IBD reaction vertex and the neutron capture position needs to be reconstructed.

Super-K solar neutrino search

Reconstruction taking into account neutron capture light

Kneale et al 2023

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.109.092001

Vertex resolution

- If the vertex error >> neutron displaced vertex
 - No direction!
- Neutron displacement
 - ~ 10cm @ 100 MeV

• ***

- Actually no need to reconstruct two vertices
- Just need the neutron final direction
- Similar ideas in Liquid Scintillators
 - Mukhopadhyay et al 2004.02045
 - Li et al 2003.03982
 - Fischer et al 1504.05466

Vertex reconstruction uncertainty ~ 3D Gaussian approx.

30 cm vertex error

Preliminary

10 cm vertex error

Preliminary

Conclusion

- Even for the simplest WIMP scenario, the total annihilation cross section is not fully constrained
- Neutrino channel is THE bottleneck
- KM3NeT, with its visibility to GC could test the WIMP model
- Hard to push further without new ideas at MeV-GeV range.
 - Improved reconstruction? Machine Learning?

Capture time and distance

Boosted Dark Matter

- GeV-TeV range
- Neutrino floor is closing
 - Coherent scattering of solar, atm, SN neutrinos
- New opportunities at low energies?

Cappiello and Beacom 1906.11283

Solar WIMPs

Press, Spergel (1985) Krauss, Freese, Press, Spergel (1985) Silk, Olive, Srednicki (1985)

