Dark Matter Heating vs. Vortex Creep Heating of Old Neutron Stars

Maura E. Ramirez Quezada (JGU Mainz)

PPC 2024

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

Based on

arXiv: 2309.02633, 2308.16066, 2204.02413,

In collaboration with/

Motoko Fujiwara, Koichi Hamaguchi & Natsumi Nagata

October 2024

Dark Matter Heating vs. Vortex Creep Heating of Old Neutron Stars

Maura E. Ramirez Quezada (JGU Mainz)

PPC 2024

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

Based on

arXiv: 2309.02633, 2308.16066, 2204.02413,

In collaboration with/

Motoko Fujiwara, Koichi Hamaguchi & Natsumi Nagata

October 2024

Outline

- Neutron Stars
 - Structure
 - Cooling process
- NS as DM laboratories
 - DM heating of NS
 - Vortex creep
- Summary

Neutron Stars: Structure

Lim, Y., Hyun, C.H., & Lee, C. (2015). Nuclear Equation of State and Neutron Star Cooling. arXiv: Nuclear Theory.

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars

The upper mass limit depends on the uncertain EOS

 $M_{\star} \sim (1-2) \text{ M}_{\odot}, \ R_{\star} \sim (10-16) \text{ km}, \ \overline{\rho} \sim \mathcal{O}(10^{14}) \text{ g/cm}^3$

- - Mostly composed of neutrons + admixture of protons and

Maura E. Ramirez Quezada

Neutron Stars: Standard Cooling Theory

▶ Young NS ($t \leq 10^5 \text{ yr}$) Neutrino emission is the predominant process

 $\frac{dT}{dt} = -$

Old NS ($t > 10^5 \text{ yr}$)
Photon emission is the predominant process

 $L_{\gamma} = 4\pi R_{\star}^2 \sigma_{\rm SB} T_s^4$

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars Maura E. Ramirez Quezada

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars Maura E. Ramirez Quezada

$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma} + L_{\rm DM}$

Neutron Stars

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars Maura E. Ramirez Quezada

$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma} + L_{\rm DM}$

Neutron Stars

Stellar matter

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars Maura E. Ramirez Quezada

$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma} + L_{\rm DM}$

Neutron Stars

Stellar matter

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars Maura E. Ramirez Quezada

DM accumulates in the core

Neutron Stars

Stellar matter

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars

DM accumulates in the core DM annihilates to SM particles

^{ng} Maura E. Ramirez Quezada

DM heating of NS dT $\frac{dt}{dt} = -L_{\nu} - L_{\gamma} + L_{\rm DM}$

Surface Temperature

Dark Matter Heating vs Vortex Creep Heating Maura E. Ramirez Quezada of old Neutron Stars

Heating of the star to temperatures of the order of $\sim 2000 \, \mathrm{K}$

Observations of an old/cold NS potentially leads to a DM signal.

NS as DM laboratories

- ▶ No detector threshold for light DM: Sub-GeV regime, down to O(10) keV
- DM particles become mildly relativistic when approaching the NS
 - № $v_{esc}^2(r) = 1 B(r) (v ~ (0.5 0.7) c \text{ at})$ the NS surface)
 - Velocity/momentum suppressed scattering
- Threshold cross sections:
 - Nucleons: $\sigma_{th}^N \sim [10^{-45} 10^{-44}] \,\mathrm{cm}^2$

• Leptons:
$$\sigma^{\mu}_{th} \sim 8 \times 10^{-44} \,\mathrm{cm}^2$$

▶ No limitation from neutrino floor

NS as DM laboratories

Multiple targets: e, μ, p, n

DM coupled only to muon

K. Hamaguchi, N. Nagata, MRQ [2204.02413]

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars

A large parameter space will remain unexplored in the LHC and DM direct searches.

NS as DM laboratories Internal heating: Vortex creep

Figure taken from <u>K. Yanagi's</u>

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars Maura E. Ramirez Quezada

- ▶ Some old and warmer NSs have been observed $(T \gg 2000 \,\mathrm{K})$
- Neither standard cooling nor DM heating can explain those old warm NSs.
- Some internal heating could be the reason/explanation for such NS temperatures:

Vortex creep Heating. M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

NS as DM laboratories Internal heating: Vortex creep

Vortex lines are formed in a rotating NS

Vortex creep: Vortex lines start to move outwards

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars

M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

Vortex creep heating: total energy stored in the superfluid component is dissipated as heat

Maura E. Ramirez Quezada

NS as DM laboratories Internal heating: Vortex creep $C\frac{aI}{dt} = -L_{\nu} - L_{\gamma} + L_{VC}$ $L_{\rm VC} = J | \Omega |$

Steady vortex creep scenario: The crust and superfluid component decelerate at the same time

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars

M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

Phenomenological approach of J

 $T_s^{\text{eq}} = \left(\frac{J|\dot{\Omega}|}{4\pi R_\star^2 \sigma_{\text{SB}}}\right)^T$

VC heating mechanism balanced with the photon luminosity $L_{\gamma} = L_{\rm VC}$

M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

NS as DM laboratories Internal heating: Vortex creep

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars

M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

NS as DM laboratories Vortex creep heating + <u>DM heating</u>

$$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma} + L_{\text{heat}}$$

$$L_{\rm heat} \simeq L_{\gamma} = B(R_{\star}) \times 4\pi R_{\star}^2 \sigma_{\rm SB} T_s^4$$

After capture and annihilation of DM

 $L_{\rm DM} \simeq B(R_{\star}) \times [X + (B(R_{\star})^{-1/2} - 1)] m_{\chi} C(m_{\chi})$

Dark Matter Heating vs Vortex Creep Heating Maura E. Ramirez Quezada of old Neutron Stars

Assuming the heating luminosity is dominated by the DM effects:

$$T_{s|\text{DM}} = \left(\frac{[X + (B(R_{\star})^{-1/2} - 1)] m_{\chi} C(m_{\chi})}{4\pi R_{\star}^2 \sigma_{\text{SB}}}\right)^{1/4}$$
$$T_{s}^{\text{Max}} = 2600 \text{ K}$$

The predicted surface temperature dominated by DM effects is quite universal for a wide range of DM mass

$$1 \text{ GeV} \lesssim m_{\chi} \lesssim 1 \text{ PeV}$$

NS as DM laboratories Vortex creep heating + <u>DM heating</u>

$$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma} + L_{\text{heat}}$$

 $L_{\rm VC} + L_{\rm DM}$

$$L_{\rm heat} \simeq L_{\gamma} = B(R_{\star}) \times 4\pi R_{\star}^2 \sigma_{\rm SB} T_s^4$$

After capture and annihilation of DM

 $L_{\rm DM} \simeq B(R_{\star}) \times [X + (B(R_{\star})^{-1/2} - 1)] m_{\chi} C(m_{\chi})$

Dark Matter Heating vs Vortex Creep Heating Maura E. Ramirez Quezada of old Neutron Stars

Assuming the heating luminosity is dominated by the DM effects:

$$T_{s|\text{DM}} = \left(\frac{[X + (B(R_{\star})^{-1/2} - 1)] m_{\chi} C(m_{\chi})}{4\pi R_{\star}^2 \sigma_{\text{SB}}}\right)^{1/4}$$
$$T_{s}^{\text{Max}} = 2600 \text{ K}$$

The predicted surface temperature dominated by DM effects is quite universal for a wide range of DM mass

$$1 \text{ GeV} \lesssim m_{\chi} \lesssim 1 \text{ PeV}$$

NS as DM laboratories Vortex creep heating + <u>DM heating</u> To observe DM heating effects:

 $L_{\rm VC} \ll L_{\rm DM}$

The DM heating is concealed by the vortex creep heating unless $J \leq 10^{38} \,\mathrm{erg} \cdot \mathrm{s}$

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars

M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

NS as DM laboratories Vortex creep heating + <u>DM heating</u> To observe DM heating effects:

The DM heating is concealed by the vortex creep heating unless $J \leq 10^{38} \,\mathrm{erg} \cdot \mathrm{s}$

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars

<u>M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]</u>

NS as DM laboratories Vortex creep heating + <u>DM heating</u> To observe DM heating effects:

The DM heating is concealed by the vortex creep heating unless $J \leq 10^{38} \,\mathrm{erg} \cdot \mathrm{s}$

Seems to be challenging

 $J \sim 10^{44} \,\mathrm{erg} \cdot \mathrm{s}$ can explain old & warm NS

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars

M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

Summary

▶ NS Heating is a promising alternative/complementary method to test Dark Matter.

- Allows access to velocity- and momentum-dependent interactions
- Probes the Sub-GeV DM mass regime
- Multiple targets make it ideal for testing DM-lepton interactions
- Some old and warm NSs have been observed suggesting an internal heating mechanism
 - ▶ Vortex creep heating: If this is the dominant mechanism, DM effects could be difficult to detect or observe.

PPC 2024

భారతీయ సాంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్ भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

Back up slides

DM models: tree-level coupling

Field	Spin	$\mathrm{SU}(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	\mathbb{Z}_2
χ_S	1/2	1	1	0	_
ξ_D	1/2	1	2	-1/2	_
η_D	1/2	1	2	1/2	_
\widetilde{L}	0	1	2	-1/2	_

Neutron star

- Neutron star of $M_{\star} = 1.4 \,\mathrm{M_{\odot}}$, And radius of $R_{\star} \sim 12 \,\mathrm{km}$
- EOS: APR- EOS (<u>A. Akmal</u>, <u>V.R. Pandharipande</u>, <u>D.G.</u> <u>Ravenhall</u>) Phys.Rev.C58:1804-1828,1998
- pion condensation

A lot of uncertainty: Many different Equations of state!

Neutron star cooling: Neutrino emission

Figure taken from Natsumi Nagata

Yet, a lot to do!

Possible observations

• Sensitivity at James Webb Space Telescope. For this we need

- Exposure time ~ 1 day
- Distance ~ 10 pc

Nearest NS is discovered at 100 pc (!)

Future possibilities

Thirty Meter Telescope

Extremely Large Telescope

 $E_{\rm pin} < 0$ Nuclear pinning

Evaluation of $E_{\rm pin}$

- [Donati, Pizzochero (2004)] • Semi-classical approach [Seveso, Pizzochero, Grill, Haskell (2015)] Thomas-Fermi approx. (Interacting fermi gas of nucleons)
- [Avogadro, Barranco, Broglia, Vigezzi (2008)] • Quantum approach [Klausner, et al. [2303.18151]] Hartree-Fock-Bogoliubov approx

Table from Motoko's

		$E_{\rm pin}$ -evaluation		
		Semi-classical	Quantum	
$f_{\rm pin}$ -evaluation	Micro.	Donati, et al. (2004)	Avogadro, et al. (2008)	
	Meso.	Seveso, et al. (2015)	Klausner, et al [2303.18151]	

Theoretical approaches for Vortex creep

$$\begin{split} J_{\rm pin} &\simeq \int_{R_{\rm in}}^{R_{\rm out}} dR \, d\theta \, d\phi \, R^3 \sin^2 \theta \cdot \frac{f_{\rm pin}}{\kappa} \\ f_{\rm pin}|_{\rm NP} &\simeq \frac{|E_{\rm pin}|}{\Delta r \Delta L} \end{split}$$

