Dark Matter Heating vs. Vortex Creep Heating of Old Neutron Stars

Maura E. Ramirez Quezada (JGU Mainz)

PPC 2024

JOHANNES GUTENBERG **UNIVERSITÄT MAINZ**

భారతీయ సాంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్ भारतीय प्रौद्योगिकी संस्थान हैदराबाद **Indian Institute of Technology Hyderabad**

Based on

arXiv: 2309.02633, 2308.16066, 2204.02413,

In collaboration with/

Motoko Fujiwara, Koichi Hamaguchi & Natsumi Nagata

October 2024

Dark Matter Heating vs. Vortex Creep **Heating of Old Neutron Stars**

Maura E. Ramirez Quezada (JGU Mainz)

PPC 2024

JOHANNES GUTENBERG **UNIVERSITÄT MAINZ**

భారతీయ సాంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్ भारतीय प्रौद्योगिकी संस्थान हैदराबाद **Indian Institute of Technology Hyderabad**

Based on

arXiv: 2309.02633, 2308.16066, 2204.02413,

In collaboration with/

Motoko Fujiwara, Koichi Hamaguchi & Natsumi Nagata

October 2024

Outline

- **Deutron Stars**
	- Structure
	- ▶ Cooling process
- **> NS as DM laboratories**
	- DM heating of NS
	- **De Vortex creep**
- **B** Summary

Neutron Stars: Structure

The upper mass limit depends on the uncertain EOS

 $M_{\star} \sim (1 - 2) \text{ M}_{\odot}$, $R_{\star} \sim (10 - 16) \text{ km}$, $\bar{\rho} \sim \mathcal{O}(10^{14}) \text{ g/cm}^3$

- -
	- Mostly composed of neutrons + admixture of protons and
	-

Dark Matter Heating vs Vortex Creep Heating
of old Neutron Stars

4

Lim, Y., Hyun, C.H., & Lee, C. (2015). Nuclear Equation of State and Neutron Star Cooling. *arXiv: Nuclear Theory*.

Young NS $(t \lesssim 10^5 \,\mathrm{yr})$ Neutrino emission is the predominant process

Neutron Stars: Standard Cooling Theory

Old NS $(t > 10^5 \text{ yr})$ Photon emission is the predominant process

Lγ $= 4\pi R_{\star}^2 \sigma_{SB} T_s^4$

 $= - L_{\nu}$

Dark Matter Heating vs Vortex Creep Heating Dark Matter Heating vs Vortex Creep Heating
of old Neutron Stars

C

dT

dt

Dark Matter Heating vs Vortex Creep Heating Maura E. Ramirez Quezada of old Neutron Stars

$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma} + L_{DM}$

Neutron Stars

Dark Matter Heating vs Vortex Creep Heating Maura E. Ramirez Quezada of old Neutron Stars

$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma} + L_{DM}$

Neutron Stars

Stellar matter

Dark Matter Heating vs Vortex Creep Heating Maura E. Ramirez Quezada of old Neutron Stars

dT $C\frac{du}{dt} = -L_{\nu} - L_{\gamma} + L_{DM}$

Neutron Stars

Stellar matter

Dark Matter Heating vs Vortex Creep Heating Maura E. Ramirez Quezada of old Neutron Stars

DM accumulates in the core

DM heating of NS

DM annihilates to

Dark Matter Heating vs Vortex Creep Heating
of old Neutron Stars
Maura E. Ramirez Quezada

SM particles Stellar matter DM accumulates in the core

Neutron Stars

C

DM heating of NS *C dT dt* $= -L_{\nu} - L_{\gamma} + L_{DM}$

Surface Temperature

Dark Matter Heating vs Vortex Creep Heating Dark Matter Heating vs Vortex Creep Heating
of old Neutron Stars

Heating of the star to temperatures of the order of $\sim 2000 \text{ K}$

Observations of an old/cold NS potentially leads to a DM signal.

- No detector threshold for light DM: Sub-GeV \triangleright regime, down to $\mathcal{O}(10)\,\text{keV}$
- **DM** particles become mildly relativistic when approaching the NS
	- $v_{esc}^2(r) = 1 B(r)$ $(v \sim (0.5 0.7) c$ at the NS surface)
	- **•** Velocity/momentum suppressed scattering
- **B** Threshold cross sections:

NS as DM laboratories

► Nucleons:
$$
\sigma_{th}^{N}
$$
 ~ $[10^{-45} - 10^{-44}]$ cm²

$$
\triangleright \text{ Leptons: } \sigma_{th}^{\mu} \sim 8 \times 10^{-44} \text{ cm}^2
$$

▶ No limitation from neutrino floor

Dark Matter Heating vs vortex Creep Heating | Maura E. Ramirez Quezada

NS as DM laboratories

 \triangleright Multiple targets: e, μ, p, n

DM coupled only to muon

K. Hamaguchi, N. Nagata, MRQ [2204.02413]

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars

A large parameter space will remain unexplored in the LHC and DM direct searches.

Internal heating: Vortex creep NS as DM laboratories

Figure taken from [K. Y](https://indico.icrr.u-tokyo.ac.jp/event/259/contributions/1551/attachments/1213/1447/yanagi_WIMP.pdf)anagi's

Dark Matter Heating vs Vortex Creep Heating Dark Matter Heating vs Vortex Creep Heating
of old Neutron Stars

- Some old and warmer NSs have been observed $(T \gg 2000 \text{ K})$
- Neither standard cooling nor DM heating can explain those old warm NSs.
- Some internal heating could be the reason/explanation for such NS temperatures:

Vortex creep Heating. M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

of old Neutron Stars Maura E. Ramirez Quezada ¹¹

NS as DM laboratories Internal heating: Vortex creep

Vortex lines are formed in a rotating NS

Vortex creep: Vortex lines start to move outwards

Vortex creep heating: total energy stored in the superfluid component is dissipated as heat

NS as DM laboratories Internal heating: Vortex creep · *C dT dt* $= -L_{\nu} - L_{\gamma} + L_{\gamma C}$

 Ω

*T*eq *s* $=$ $($ *J* | · $\Omega\vert$ $4\pi R_{\star}^2 \sigma_{SB}$

VC heating mechanism balanced with the photon luminosity $L_{\gamma} = L_{\text{VC}}$

Dark Matter Heating vs Vortex Creep Heating

of old Neutron Stars 12

Steady vortex creep scenario: The crust and superfluid component decelerate at the same time

 $L_{\text{VC}} = J$

Phenomenological approach of *J*

NS as DM laboratories Internal heating: Vortex creep

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars Maura E. Ramirez Quezada ¹⁵

NS as DM laboratories Vortex creep heating + DM heating

$$
L_{\text{heat}} \simeq L_{\gamma} = B(R_{\star}) \times 4\pi R_{\star}^2 \sigma_{\text{SB}} T_s^4
$$

$$
T_{s|DM} = \left(\frac{[X + (B(R_{\star})^{-1/2} - 1)] m_{\chi} C(m_{\chi})}{4\pi R_{\star}^2 \sigma_{SB}}\right)^{1/4}
$$

$$
T_s^{\text{Max}} = 2600 \text{ K}
$$

The predicted surface temperature dominated by DM \triangleright effects is quite universal for a wide range of DM mass

$$
1 \text{ GeV} \lesssim m_\chi \lesssim 1 \text{ PeV}
$$

After capture and annihilation of DM

 $L_{DM} \simeq B(R_{\star}) \times [X + (B(R_{\star})^{-1/2} - 1)] m_{\chi} C(m_{\chi})$

Assuming the heating luminosity is dominated by the DM effects:

$$
C\frac{dT}{dt} = -L_{\nu} - L_{\gamma} + L_{\text{heat}}
$$

Dark Matter Heating vs Vortex Creep Heating of old Neutron Stars Maura E. Ramirez Quezada ¹⁵

NS as DM laboratories Vortex creep heating + DM heating

$$
L_{\text{heat}} \simeq L_{\gamma} = B(R_{\star}) \times 4\pi R_{\star}^2 \sigma_{\text{SB}} T_s^4
$$

$$
T_{s|DM} = \left(\frac{[X + (B(R_{\star})^{-1/2} - 1)] m_{\chi} C(m_{\chi})}{4\pi R_{\star}^2 \sigma_{SB}}\right)^{1/4}
$$

$$
T_s^{\text{Max}} = 2600 \text{ K}
$$

The predicted surface temperature dominated by DM D effects is quite universal for a wide range of DM mass

$$
1 \text{ GeV} \lesssim m_\chi \lesssim 1 \text{ PeV}
$$

$$
C\frac{dT}{dt} = -L_{\nu} - L_{\gamma} + L_{\text{heat}}
$$

$$
L_{\text{VC}} + L_{\text{DM}}
$$

After capture and annihilation of DM

 $L_{DM} \simeq B(R_{\star}) \times [X + (B(R_{\star})^{-1/2} - 1)] m_{\chi} C(m_{\chi})$

Assuming the heating luminosity is dominated by the DM effects:

*L*VC ≪ *L*DM

The DM heating is concealed by the vortex creep heating unless *J* ≲ 1038 erg ⋅ s

M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

NS as DM laboratories Vortex creep heating + DM heating To observe DM heating effects:

Dark Matter Heating vs Vortex Creep Heating
of old Neutron Stars

The DM heating is concealed by the vortex creep heating unless *J* ≲ 1038 erg ⋅ s

M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

Dark Matter Heating vs Vortex Creep Heating
of old Neutron Stars

NS as DM laboratories Vortex creep heating + DM heating To observe DM heating effects:

The DM heating is concealed by the vortex creep heating unless *J* ≲ 1038 erg ⋅ s

M. Fujiwara, K. Hamaguchi, N. Nagata, MRQ [arXiv: 2308.16066, 2309.02633]

Seems to be challenging

 $J \sim 10^{44}$ erg ⋅ s can explain old & warm NS

Dark Matter Heating vs Vortex Creep Heating Dark Matter Heating vs Vortex Creep Heating
of old Neutron Stars

Dark Matter Heating vs Vortex Creep Heating
of old Neutron Stars

- Allows access to velocity- and momentum-dependent interactions
- **Probes the Sub-GeV DM mass regime**
- Multiple targets make it ideal for testing DM-lepton interactions
- ▶ Some old and warm NSs have been observed suggesting an internal heating mechanism
	- Vortex creep heating: If this is the dominant mechanism, DM effects could be difficult to detect or observe.

Summary

▶ NS Heating is a promising alternative/complementary method to test Dark Matter.

PPC 2024

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

భారతీయ సాంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్
भारतीय प्रौद्योगिकी संस्थान हैदराबाद **Indian Institute of Technology Hyderabad**

Back up slides

DM models: tree-level coupling

Neutron star

- Neutron star of $M_{\star} = 1.4\,\mathrm{M}_{\odot}$, And radius of $R_{\star}\sim12\,\mathrm{km}$
- EOS: APR- EOS ([A. Akm](https://arxiv.org/search/nucl-th?searchtype=author&query=Akmal,+A)al, [V.R. P](https://arxiv.org/search/nucl-th?searchtype=author&query=Pandharipande,+V)andharipande, [D.G.](https://arxiv.org/search/nucl-th?searchtype=author&query=Ravenhall,+D) Ra[venh](https://arxiv.org/search/nucl-th?searchtype=author&query=Ravenhall,+D)all) Phys.Rev.C58:1804-1828,1998
- pion condensation

A lot of uncertainty: Many different Equations of state!

Neutron star cooling: Neutrino emission

Figure taken from Natsumi Nagata

Possible observations

o Sensitivity at James Webb Space Telescope. For this we need

- Exposure time ~ 1 day
- Distance ~ 10 pc

Nearest NS is discovered at 100 pc (!)

Extremely Large Telescope

Future possibilities

FAST (radio telescope) Thirty Meter Telescope

Yet, a lot to do!

$E_{\text{pin}} < 0$ *Nuclear pinning Interstitial pinning* $E_{\text{pin}} > 0$

Theoretical approaches for Vortex creep

- **Evaluation of** E_{pin} Semi-classical approach Thomas-Fermi approx. (Interacting fermi gas of nucleons) *[Donati, Pizzochero (2004)]* [Seveso, Pizzochero, Grill, Haskell (2015)]
- Quantum approach Hartree-Fock-Bogoliubov approx [Avogadro, Barranco, Broglia, Vigezzi (2008)] [Klausner, et al. [2303.18151]]

$$
J_{\text{pin}} \simeq \int_{R_{\text{in}}}^{R_{\text{out}}} dR d\theta d\phi R^3 \sin^2 \theta \cdot \frac{f_{\text{pin}}}{\kappa}
$$

 $f_{\text{pin}}|_{\text{NP}} \simeq \frac{|E_{\text{pin}}|}{\Delta r \Delta L}$

