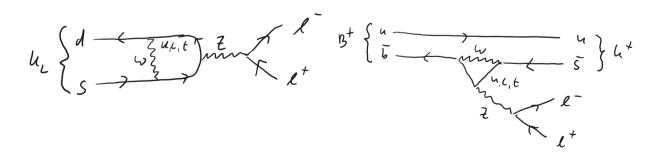
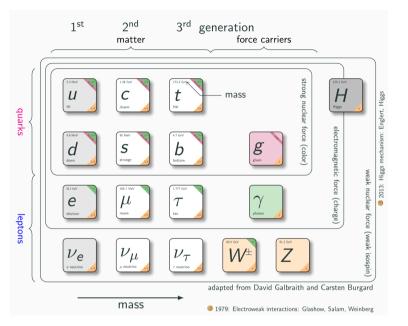
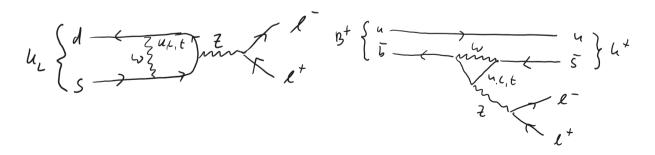
$B ightarrow K + ext{invisible}$ as a probe for light physics

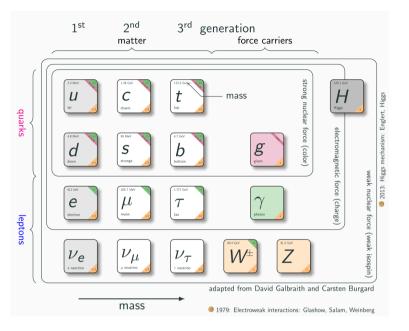
Michael Schmidt


UNSW Sydney


18 October 2024 @ PPC

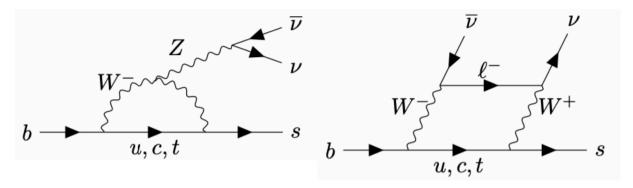
Rare meson decays


- There are no tree-level flavour changing neutral currents (FCNC) in the Standard Model (SM)
- FCNC processes only occur at loop level. They are highly suppressed and are **rare processes**.
- Rare processes valuable probe for new physics (NP), because small NP contributions can be significant.
- Meson can be produced abundantly and thus allow for high statistics in searches for rare meson decays.
- (Semi-)leptonic decays provide clean exp. signatures

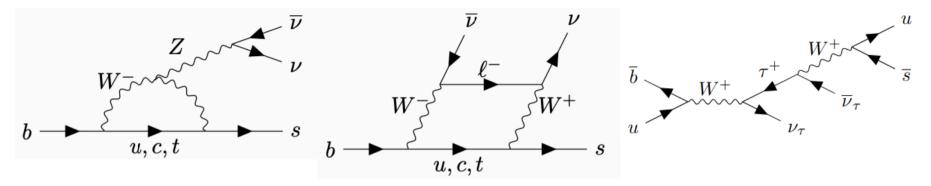


Rare meson decays

- There are no tree-level flavour changing neutral currents (FCNC) in the Standard Model (SM)
- FCNC processes only occur at loop level. They are highly suppressed and are **rare processes**.
- Rare processes valuable probe for new physics (NP), because small NP contributions can be significant.
- Meson can be produced abundantly and thus allow for high statistics in searches for rare meson decays.
- (Semi-)leptonic decays provide clean exp. signatures



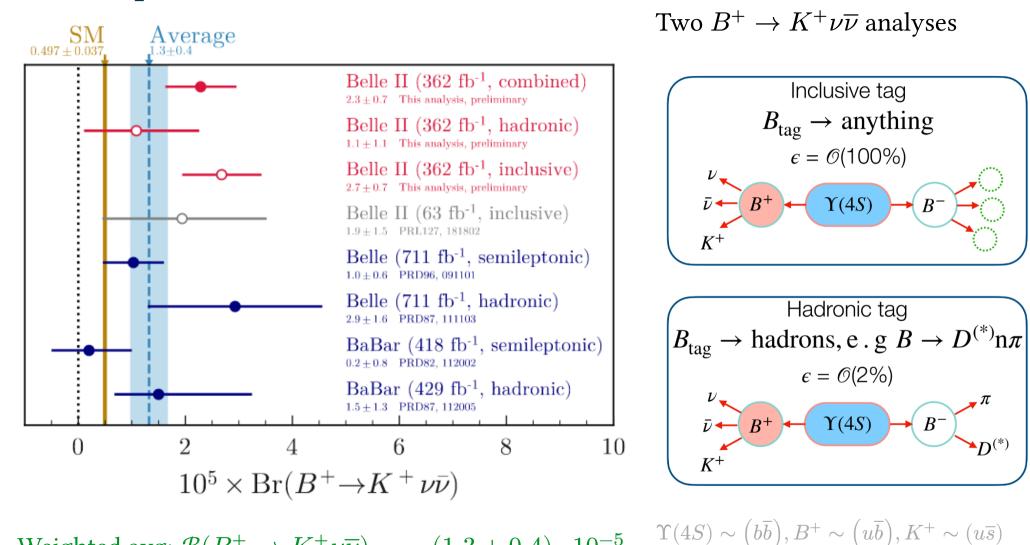
- K and B meson decays can be calculated reliably (compared to D mesons)
- many more *B* meson decay channels, since *B* is heavier


18 October 2024 @ PPC 2 / 25

$B \rightarrow K + \text{invisible}$

- SM loop, CKM and GIM suppressed: $\mathcal{A} \propto \frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \sum_i V_{ib} V_{is}^* \frac{m_i^2}{m_W^2}$
- complete factorisation into hadronic and leptonic part
- sensitive to virtual corrections *and* **new light exotic final state**
- Belle II experiment expected to measure $B \to K^{(*)} \nu \overline{\nu}$ with $\mathcal{O}(10\%)$ precision
- + Belle II already measured $B^+ \to K^+ + {\rm invisible}$

$B \rightarrow K + \text{invisible}$

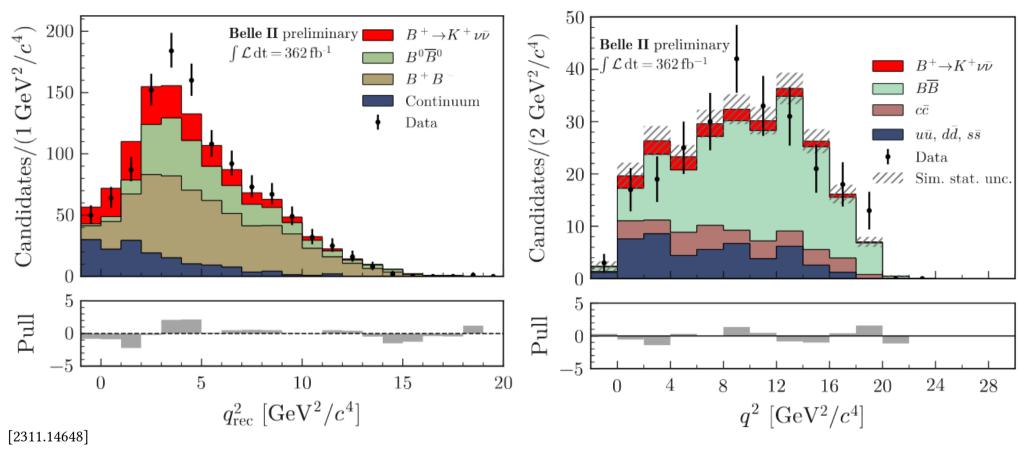


- SM loop, CKM and GIM suppressed: $\mathcal{A} \propto \frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \sum_i V_{ib} V_{is}^* \frac{m_i^2}{m_W^2}$
- complete factorisation into hadronic and leptonic part
- sensitive to virtual corrections *and* **new light exotic final state**
- Belle II experiment expected to measure $B \to K^{(*)} \nu \overline{\nu}$ with $\mathcal{O}(10\%)$ precision
- Belle II already measured $B^+ \to K^+ + \text{invisible}$
- Tree level contribution to $B^+ \to K^+ \nu \overline{\nu}$ [Kamenik+ 0908.1174] treated as background

Current experimental result

[Belle II 2311.14647]

Introduction



Weighted avg: $\mathcal{B}(B^+ \to K^+ \nu \overline{\nu})_{\rm SD} = (1.3 \pm 0.4) \cdot 10^{-5}$

Current experimental result

[Belle II 2311.14647]

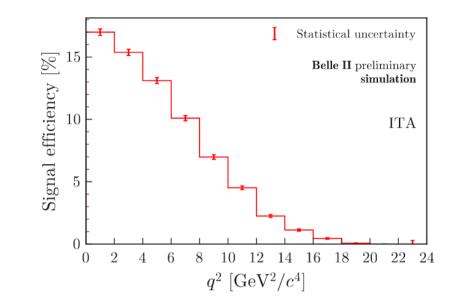
Introduction

$$\left(q_{\rm rec}^2 = q^2 + \left(E_B - m_B\right)^2 - 2 \boldsymbol{p}_{\boldsymbol{K}} \cdot \boldsymbol{p}_{\boldsymbol{B}}$$

Belle II result

- + ITA: excess for $q_{\rm rec} \sim (3-5) {\rm GeV^2}$
- HTA: no significant excess

Fits to data for different new physics


70 - 3-body vector $m_{\gamma} = 0.6 \text{ GeV}$ 60 - 3-body scalar $m_{\gamma} = 0$ BG)50 - 2-body $m_X = 2$ GeV # Events (Data − 40 **—** SM 30 Belle II ITA $\eta(BDT_2) > 0.98$ 20 10 0 5 10 0 15 $q_{\rm rec}^2 \, [{\rm GeV}^2]$ [Fridell+ 2312.12507]

$$q_{\rm rec}^2 = q^2 + \left(E_B - m_B\right)^2 - 2 \boldsymbol{p}_{\boldsymbol{K}} \cdot \boldsymbol{p}_{\boldsymbol{B}}$$

See also Altmannshofer+ 2311.14629 for 2-body decay explanation.

[Fridell+ 2312.12507]

Introduction

Fits of theory predictions to data

$\chi^2_{ m min}-100$	2b	V	\vee'	S	Т	SM
Belle II	6.8	15.2	4.7	15.1	11.9	44.6
+ BaBar SR	27.6	30.4	22.1	31.8	29.8	61.0
$+$ BaBar $s_B < 0.8$	73.3	78.8	72.9	90.2	86.9	106.7

Observables

Introduction

Observable	SM prediction	current constraint	Belle II	
	LQCD+LCSR		5 ab^{-1}	50 ab^{-1}
${\sf Br}(B^+ o K^+ u ar u)$	$(5.06\pm0.14\pm0.28) imes10^{-6}$	$(1.3\pm0.4) imes10^{-5}$	0.28(0.19)	0.11 (0.08)
${\sf Br}(B^0 o K^0_S u ar u)$	$(2.05\pm0.07\pm0.12) imes10^{-6}$	$< 2.6 imes 10^{-5}$	1.31(0.87)	0.59(0.40)
${\sf Br}(B^+ o K^{*+} u ar u)$	$(10.86 \pm 1.30 \pm 0.59) imes 10^{-6}$	$<4.0 imes10^{-5}$	1.06(0.75)	0.53(0.38)
${\sf Br}(B^0 o K^{*0} u ar u)$	$(9.05\pm1.25\pm0.55) imes10^{-6}$	$< 1.8 imes 10^{-5}$	0.60(0.40)	0.34(0.23)
$F_L(B^0 o K^{*0} u ar{ u})$	0.49 ± 0.04			0.079
$F_L(B^+ o K^{*+} u ar{ u})$	0.49 ± 0.04			0.077
$Br(B_s \to \mathrm{inv})$		$< 5.9 imes 10^{-4}$	$1.1 imes 10^{-5}$	
$Br(B o X_s u ar{ u})$	$(2.7\pm 0.2) imes 10^{-5}$	$< 6.4 imes 10^{-4}$	plar	nned

SM prediction: $B \to K^{(*)}\nu\overline{\nu}$ [Becirevic+ 2301.06990]; F_L [flavio 1810.08132]; $B \to X_s\nu\overline{\nu}$ [Altmannshofer+ 0902.0160] **constraints:** $B \to K^{(*)0}\nu\overline{\nu}$ [Belle 1702.03224]; $B^+ \to K^+\nu\overline{\nu}$ [Belle II 2311.14647]; $B^+ \to K^{*+}\nu\overline{\nu}$ [Belle 1303.3719]; $B \to X_s\nu\overline{\nu}$ [ALEPH hep-ex/0010022]; $B_s \to \text{inv}$ [Alonso-Alvarez+ 2310.13043] **projections:** [2207.06307, 1808.10567, private communication] F_L is longitudinal polarisation fraction of K^* **Light physics**

Recent work on light physics explanations

https://doi.org/10.1140/epjc/s10052-023-12326-9	PHYSICAL JOURNAL C
Regular Article - Theoretical Physics	

Tobias Felkl¹, Anjan Giri², Rukmani Mohanta³, Michael A. Schmidt^{1,a} ¹ Sydney Consortium for Particle Physics and Cosmology, School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia ² Department of Physics, IIT Hyderabad, Kandi 50228, India School of Physics, University of Hyderabad, Hyderabad 500046, India

The Decay $B \to K \nu \bar{\nu}$ at Belle II and a Massless Bino in R-parity-violating Supersymmetry

Herbert K. Dreiner,¹,^{*} Julian Y. Günther,¹,[†] and Zeren Simon Wang^{2, 3},[‡]

PHYSICAL REVIEW D 109, 075019 (2024)

Revisiting models that enhance $B^+ \to K^+ \nu \bar{\nu}$ in light of the new Belle II measurement

Xiao-Gang He,^{1,2,*} Xiao-Dong Ma⁶,^{3,4,†} and German Valencia^{5,‡}

	Published for SISSA by 🖉 Springe
	Received: March 22, 26
	REVISED: June 5, 26
	Accepted: July 5, 26
	PUBLISHED: July 18, 20
Scalar dark matt	er explanation of the excess in the

Belle II $B^+ \rightarrow K^+ +$ invisible measurement

Xiao-Gang He,^{*a*} Xiao-Dong Ma^{\odot}, ^{*b,c*} Michael A. Schmidt^{\odot}, ^{*d*} German Valencia^{$\odot e$} and Raymond R. Volkas^{$\odot f$}

EPL, **145** (2024) 14001 doi: 10.1209/0295-5075/ad1d03

$B \to K^*M_X$ vs. $B \to KM_X$ as a probe of a scalar mediator dark-matter scenario

www.epljournal.org

Alexander Berezhnoy¹ and Dmitri Melikhov^{1,2,3(a)}

 D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University 119991, Moscow, Russia
 Joint Institute for Nuclear Research - 141980 Dubna, Russia
 Faculty of Physics, University of Vienna - Boltzmannagase 5, A-1090 Vienna, Austria

PHYSICAL REVIEW D 109, 075006 (2024)

Higgs portal interpretation of the Belle II $B^+ \to K^+ \nu \nu$ measurement

David McKeen,^{1,*} John N. Ng,^{1,↑} and Douglas Tuckler^{1,2,‡} ¹TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada ²Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

(Received 11 January 2024; accepted 14 March 2024; published 5 April 2024)

Recent $B^+ \to K^+ \nu \bar{\nu}$ Excess and Muon g-2 Illuminating Light Dark Sector with Higgs Portal

Shu-Yu Ho^{*} Jongkuk Kim^[†] and Pyungwon Kd[‡] Korea Institute for Advanced Study, Seoul 02455, Republic of Korea

High theory activity on

light physics following re-

cent Belle II measurement.

Light new physics in $B \to K^{(*)} \nu \bar{\nu}$?

PHYSICAL REVIEW D 109, 075008 (2024)

Light physics

Wolfgang Altmannshofer[®] Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, California 95064, USA

Andreas Crivellino[↑] Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH–8057 Zürich, Switzerland and Paul Scherrer Institut, CH–5232 Villigen PSI, Switzerland

> Huw Haigh[‡] and Gianluca Inguglia⁶ Institute of High Energy Physics, 1050 Vienna, Austria

Jorge Martin Camalich^{II} Instituto de Astrofísica de Canarias, C/ Vía Láctea, s/n E38205 - La Laguna, Tenerife, Spain and Universidad de La Laguna, Departamento de Astrofísica, La Laguna, Tenerife, Spain

PHYSICAL REVIEW D 109, 115006 (2024)

Decoding the $B \rightarrow K\nu\nu$ excess at Belle II: Kinematics, operators, and masses

Kåre Fridell,^{1,2,*} Mitrajyoti Ghosh,^{2,†} Takemichi Okui⁰,^{2,1,‡} and Kohsaku Tobioka^{0,2,1,§} ¹KEK Theory Center, Tsukuba, Ibaraki 305–0801, Japan ²Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA

(Received 17 January 2024; accepted 24 April 2024; published 7 June 2024)

PHYSICAL REVIEW D 110, 055001 (2024)

Signatures of light new particles in $B \rightarrow K^{(*)}E_{miss}$

Patrick D. Bolton[®] Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Svjetlana Fajfer^{®†} and Jernej F. Kamenik^{®†} Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia and Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

Martín Novoa-Brunet®§

Instituto de Física Corpuscular, Universitat de Valência—Consejo Superior de Investigaciones Científicas, Parc Científic, E-46980 Paterna, Valencia, Spain and Istituto Nazionale di Física Nuclearc, Secimo di Bari, Via Orabona 4, 70126 Bari, Italy

Earlier work on light new physics

FLSEVIER

13 March 1997

Physics Letters B 395 (1997) 339-344

Rare $B \to K^{(*)} \nu \overline{\nu}$ decays at B factories

P. Colangelo^a, F. De Fazio^{a,b}, P. Santorelli^c, E. Scrimieri^{a,b} ¹ Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy

^b Dipartimento di Fisica, Universitá di Bari, Italy

° Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Italy

Received 31 October 1996; revised manuscript received 24 January 1997 Editor: R. Gatto

PHYSICAL REVIEW D, VOLUME 60, 094007

New physics effects in $B \rightarrow K^{(*)} \nu \nu$ decays

C. S. Kim* and Yeong Gyun Kim[†]

Department of Physics, Yonsei University, Seoul 120-749, Korea

T. Morozumi[‡]

Department of Physics, Hiroshima University, 739-8526 Higashi-Hiroshima, Japan (Received 27 May 1999; published 1 October 1999)

This is a small selection of papers.

Let me know if I forgot to include

ELSEVIER

Physics Letters B 506 (2001) 77-84

PHYSICS LETTERS B

www.elsevier.nl/locate/nne

Rare $B \to K^* \nu \bar{\nu}$ decay beyond standard model

T.M. Aliev, A. Özpineci, M. Savcı Physics Department, Middle East Technical University, 06531 Ankara, Turkey Received 11 January 2001: accented 1 March 2001 Editor R Gatto

3 May 2001

Published for SISSA by D Springer

RECEIVED: November 17, 2021 REVISED: December 1, 2021 Accepted: December 1, 2021 PUBLISHED: December 17, 2021

A tale of invisibility: constraints on new physics in

 $b \rightarrow s \nu \nu$

Tobias Felkl, Sze Lok Li and Michael A. Schmidt

Sydney Consortium for Particle Physics and Cosmology, School of Physics. The University of New South Wales. Sudney, NSW 2052, Australia E-mail: t.felkl@unsw.edu.au, szel10305@gmail.com, m.schmidt@unsw.edu.au

Eur. Phys. J. C (2023) 83:791	The European		
https://doi.org/10.1140/epjc/s10052-023-11975-0	Physical Journal C		
Regular Article - Theoretical Physics			

Complementarity of $B \to K^{(*)} \mu \bar{\mu}$ and $B \to K^{(*)} + inv$ for searches of GeV-scale Higgs-like scalars

Maksym Ovchynnikov¹⁽⁰⁾, Michael A. Schmidt^{2,a}⁽⁰⁾, Thomas Schwetz¹⁽⁰⁾

Institut für Astroteilchen Physik, Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany Sydney Consortium for Particle Physics and Cosmology, School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia

¹Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 1A1, Canada ²Centre for Theoretical Physics, University of Sussex, Brighton BN1 90J, United Kingdom (Received 4 March 2004; published 10 November 2004) Published by IOP Publishing for SISSA

PHYSICAL REVIEW LETTERS

Dark Matter Particle Production in $b \rightarrow s$ Transitions with Missing Energy

Chris Bird,1 Paul Jackson,1 Robert Kowalewski,1 and Maxim Pospelov1,2

Received: February 23, 2009 ACCEPTED: March 11, 2009 Published: April 6, 2009

New strategies for new physics search in $B \to K^* \nu \bar{\nu}$, $B \to K \nu \bar{\nu}$ and $B \to X_{s} \nu \bar{\nu}$ decays

Wolfgang Altmannshofer,^a Andrzej J. Buras,^{a,b} David M. Straub^a and Michael Wick^a

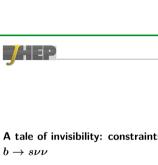
^aPhysik-Department, Technische Universität München, James-Franck-Str., 85748 Garching, Germany ^bTUM Institute for Advanced Study. Technische Universität München. Arcisstr. 21, 80333 München, Germany E-mail: wolfgang.altmannshofer@ph.tum.de, andrzej.buras@ph.tum.de, david.straub@ph.tum.de, michael.wick@ph.tum.de

VOLUME 93. NUMBER 20

Published for SISSA by 🖉 Springer

RECEIVED: September 14, 2022 REVISED: January 11, 2023 ACCEPTED: February 18, 2023 Published: March 6, 2023

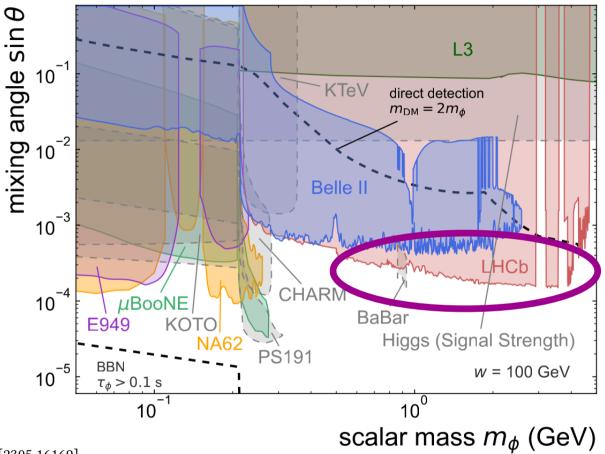
FCNC *B* and *K* meson decays with light bosonic Dark Matter


Xiao-Gang He.^{a,b} Xiao-Dong Ma^a and German Valencia^a

Michael Schmidt

your paper.

week ending 12 NOVEMBER 2004



Light scalar φ

 $B \to K^{(*)} + \varphi(\to \text{invisible})$

Light GeV-scale Higgs-like scalar

Light physics

E949: $K^+ \to \pi^+ \phi(\to inv.)$ Phys. Rev. D 79 (2009) 092004

KOTO: $\mathcal{K}_L^0 \rightarrow \pi^0 \phi(\rightarrow \text{inv.})$ Phys. Rev. Lett. 126 (12) (2021) 121801

NA62: $K^+ \rightarrow \pi^+ \phi(\rightarrow inv.)$ JHEP 02 (2021) 201, JHEP 06 (2021) 093

PS191: $K^{\pm} \rightarrow \pi^{\pm} \phi (\rightarrow e^{+} e^{-}, \mu^{+} \mu^{-})$ Phys. Lett. B 203(1988) 332–334, Phys. Lett. B 820 (2021) 136524

CHARM: $K^{\pm} \rightarrow \pi^{\pm} \phi(\rightarrow e^{+} e^{-}, \mu^{+} \mu^{-})$ Phys. Lett. B 203(1988) 332–334, Phys. Lett. B 820 (2021) 136524

Belle II: $B \rightarrow K^{(*)} \phi(\rightarrow e^+ e^-, \mu^+ \mu^-, \pi^+ \pi^-, K^+ K^-)$ arXiv:2306.02830 [hep-ex] 2023

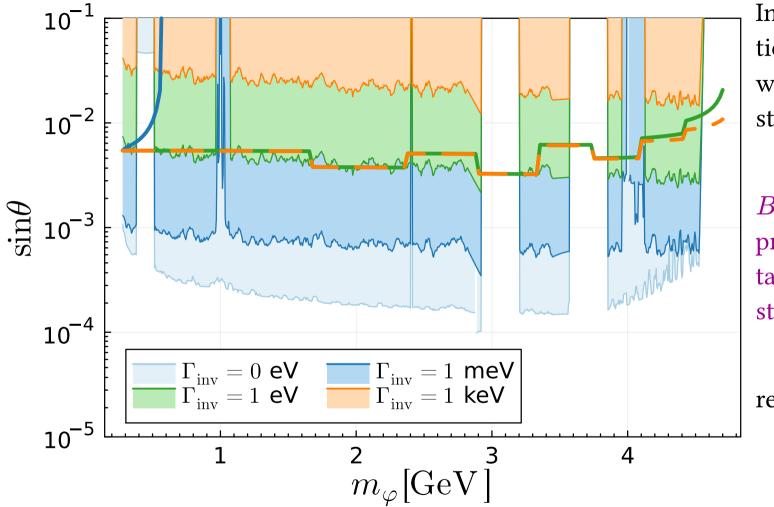
KTeV: $K_{L}^{0} \rightarrow \pi^{0} \phi (\rightarrow \mu^{+} \mu^{-})$ Phys. Rev. Left. 84(2000) 5279–5282, Phys. Rev. D 99 (1) (2019) 015018

BaBar: $B \rightarrow X_S \phi$ ($\rightarrow e^+ e^-, \mu^+ \mu^-, \pi^+ \pi^-, K^+ K^-$) Phys. Rev.Lett. 114 (17) (2015) 171801, Phys. Rev. D 99 (1) (2019) 015018

L3: $e^+e^- \rightarrow Z^*\phi$ Phys. Lett. B 385 (1996) 454–470

LHCb: $B \rightarrow K^{(*)} \phi(\rightarrow \mu^+ \mu^-)$ Phys. Rev. Lett. 115 (16) (2015) 161802, Phys. Rev. D 95 (7) (2017) 071101, Phys. Rev. D 99 (1) (2019) 015018

[2305.16169]


- + 2 parameters: mass m_{φ} and mixing angle θ
- strongest constraint: $B^+ \to K^+ \varphi (\to \mu \overline{\mu})$ [LHCb 1612.07818]

Michael Schmidt

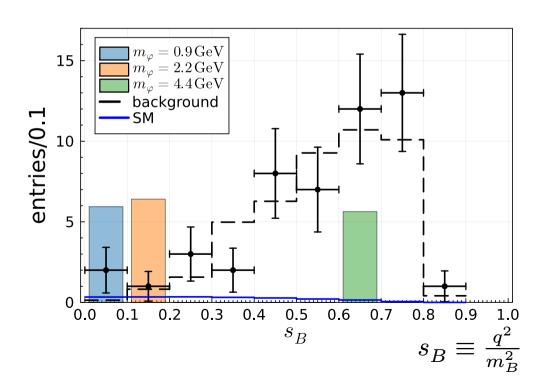
Light GeV-scale scalar

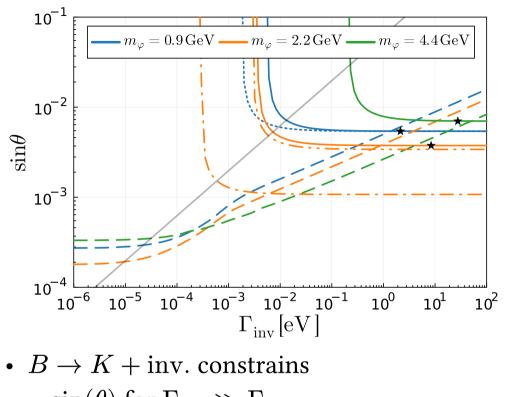
[Ovchynnikov, MS, Schwetz 2306.09508]

Light physics

In presence of additional invisible decay width Γ_{inv} , LHCb constraint is weakened

 $B \rightarrow K + \text{invisible}$ provides a complementary probe which constrains this scenario.


requires $\Gamma_{\rm inv}\gtrsim 1~{\rm eV}$


Light GeV-scale scalar

[Ovchynnikov, MS, Schwetz 2306.09508]

Light physics

- BaBar differential distribution
- 3 benchmark points with
 - ▶ masses 0.9, 2.2 and 4.4 GeV
 - $\Gamma_{inv} = 10 \text{ eV}$ and
 - $\sin\theta = 6 \cdot 10^{-3}$

- $\sin(\theta)$ for $\Gamma_{inv} \gg \Gamma_{vis}$
- $\Gamma_{\rm inv}$ for $\Gamma_{\rm inv} \ll \Gamma_{\rm vis}$
- + $B \rightarrow K + \text{inv.}$ dominates for $\Gamma_{\text{inv}} \gtrsim 1 \text{ eV}$

Invisible decays to heavy neutral leptons

real scalar coupled to sterile neutrinos

$$\mathcal{L}=-\frac{1}{2}\overline{N^c}(\mu_N+y_N\varphi)N$$

Invisible Higgs decay constrains

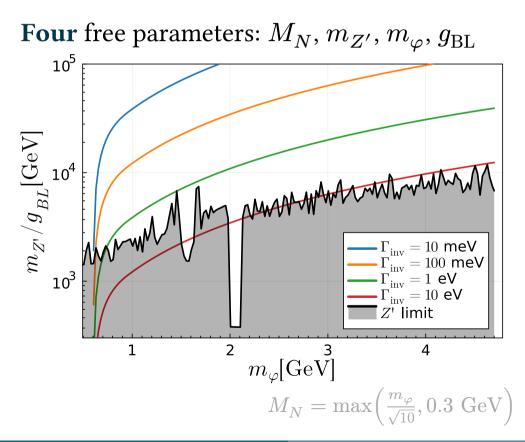
$$\Gamma(\varphi \to NN) \lesssim 0.06 \left(\frac{10^{-2}}{\sin\theta}\right)^2 m_\varphi$$

Light physics

Invisible decays to heavy neutral leptons

Light physics

real scalar coupled to sterile neutrinos


$$\mathcal{L}=-\frac{1}{2}\overline{N^c}(\mu_N+y_N\varphi)N$$

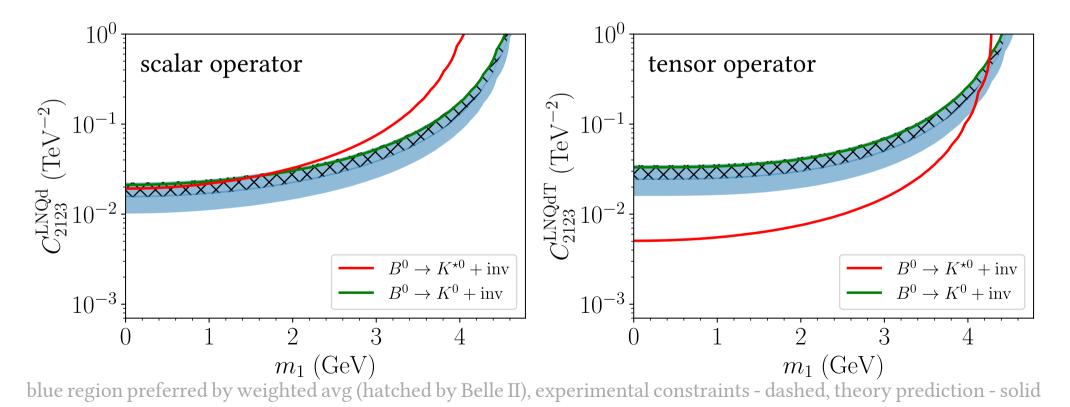
Invisible Higgs decay constrains $\Gamma(\varphi \to NN) \lesssim 0.06 \left(\frac{10^{-2}}{\sin\theta}\right)^2 m_\varphi$

 $B-L \bmod el$

$$\mathcal{L} = -\frac{1}{2}\overline{N^c}y_N\varphi N \ \rightarrow \ M_N = y_N\frac{v_\varphi}{\sqrt{2}}$$

Light sterile neutrinos N $B \rightarrow K^{(*)} + NN$ $B \rightarrow K^{(*)} + N\nu$

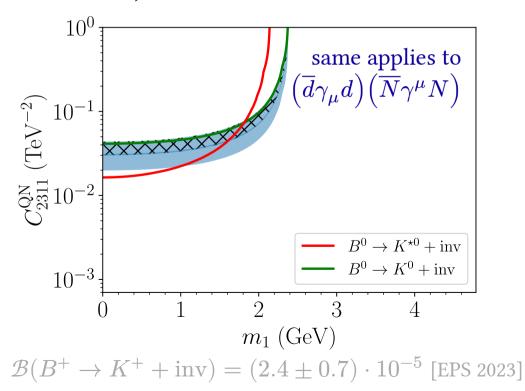
Light sterile neutrinos

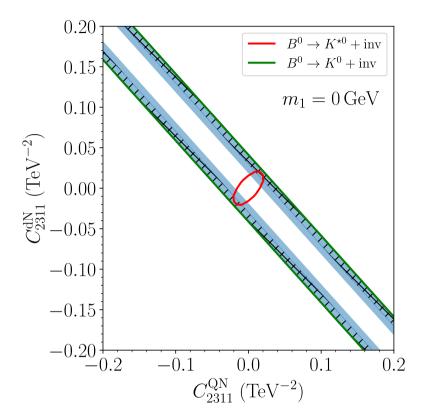

$$\mathcal{L} = C^{\mathrm{LNQd}} ig(\overline{L}^lpha N ig) arepsilon_{lpha eta} ig(\overline{Q}^eta d ig))$$

$$+ C^{\mathrm{LNQdT}} \left(\overline{L}^{\alpha} \sigma_{\mu\nu} N \right) \varepsilon_{\alpha\beta} \left(\overline{Q}^{\beta} \varepsilon^{\mu\nu} d \right)$$

Wilson coeff. defined at $\mu=1~{\rm TeV}$

[Felkl,Giri,Mohanta,MS 2309.02940]

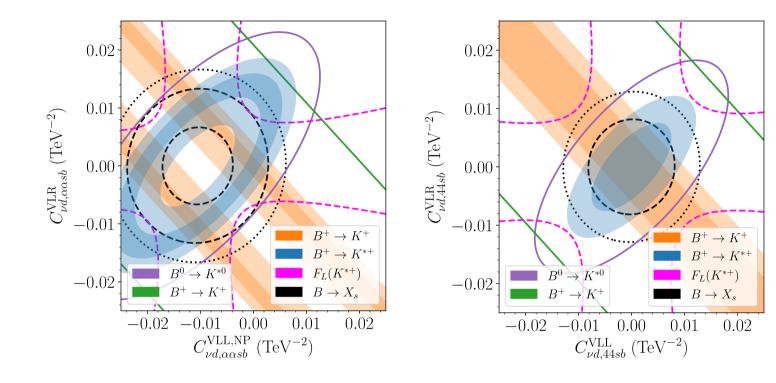

- $\mathcal{B}(B^+ \to K^+ + \mathrm{inv}) = (2.4 \pm 0.7) \cdot 10^{-5}$ [EPS 2023]
- naive comparison of branching ratio
- scalar operator not constrained by $B \to K^* + \mathrm{inv}$
- *tensor operator* strongly constrained by $B \to K^* + inv$



Light physics

Light sterile neutrinos [Felkl,Giri,Mohanta,MS 2309.02940]

- $\mathcal{L} = C^{\rm QN} \left(\overline{Q} \gamma_{\mu} Q \right) \left(\overline{N} \gamma^{\mu} N \right) + C^{\rm dN} \left(\overline{d} \gamma_{\mu} d \right) \left(\overline{N} \gamma^{\mu} N \right)$
- Wilson coefficients defined at $\mu = 1 \text{ TeV}$
- naive comparison of branching ratio
- $B \to K^* + \text{inv}$ constrains chiral vector operator at low mass, \rightarrow interference allows to avoid constraint


blue region preferred by weighted avg (hatched by Belle II), experimental constraints - dashed, theory prediction - solid

Light physics

Complementarity

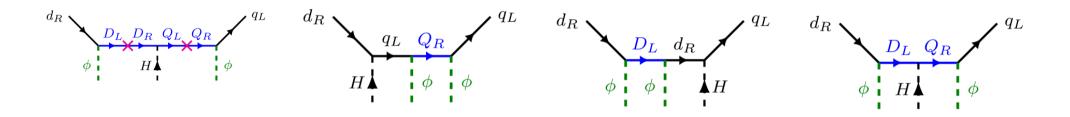
[Felkl, Li, MS 2111.04327]

Light physics

LEFT operators

 $\begin{aligned} \mathcal{O}_{\nu d,\alpha\alpha sb}^{\mathrm{VLX}} &= \\ & \left(\overline{\nu_{\alpha}}\gamma_{\mu}P_{L}\nu_{\alpha}\right)\left(\overline{s}\gamma^{\mu}P_{L,R}b\right) \end{aligned}$

- current constraints solid purple and green lines
- viable light (dark) regions if SM confirmed by Belle II with 5(50)ab⁻¹
- black dotted (dashed) $B \rightarrow X_s \nu \nu \quad {\rm with} \quad 50\% \end{tabular}$ (20%) precision

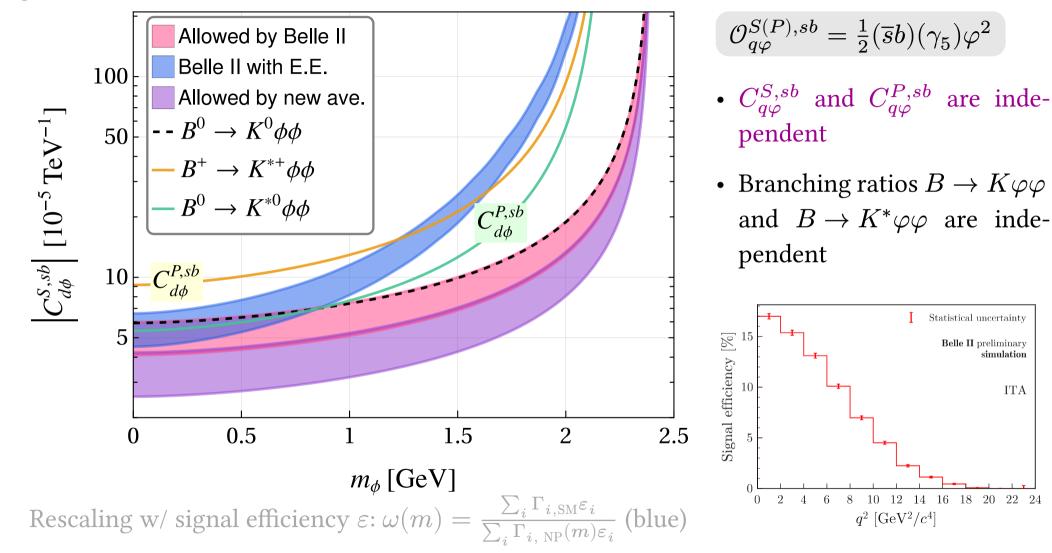

Different observables provide complementary probes

- Straight bands $\mathcal{A} \propto |C_{\nu d, \alpha \alpha s b}^{\text{VLL}} + C_{\nu d, \alpha \alpha s b}^{\text{VLR}}|$
- Ellipses: $\mathcal{A} \propto A(q^2) |C_{\nu d, \alpha \alpha s b}^{\text{VLL}} + C_{\nu d, \alpha \alpha s b}^{\text{VLR}}| + B(q^2) |C_{\nu d, \alpha \alpha s b}^{\text{VLL}} + C_{\nu d, \alpha \alpha s b}^{\text{VLR}}|$

Light dark matter $B \rightarrow K^{(*)} + \text{DM DM}$

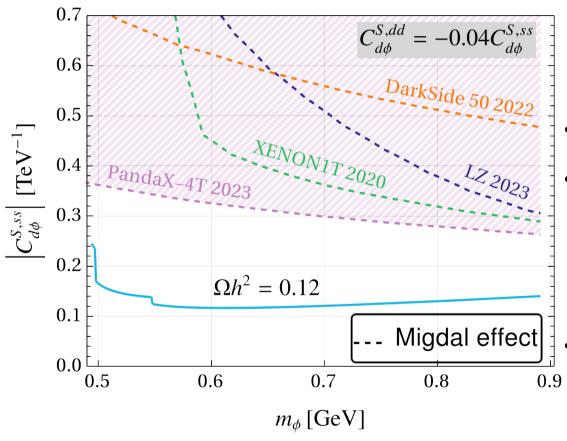
[He, Ma, MS, Valencia, Volkas 2403.12485] Light physics

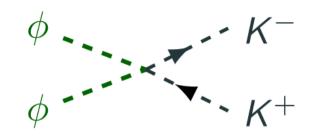
- Real scalar $\varphi \sim (\mathbf{1}, \mathbf{1}, \mathbf{0})_{-}$
- Scalar operator $\mathcal{O}_{q\varphi}^{S,sb} = \frac{1}{2}(\overline{s}b)\varphi^2$ viable explanation for $B^+ \to K^+ \nu \overline{\nu}$ with $\Lambda \sim O(10 \text{ PeV})$ [Ma+ 2309.12741]
- UV completion: Introduce vector-like quarks $Q \sim \left(\mathbf{3}, \mathbf{2}, \frac{1}{6}\right)$ and $D \sim \left(\mathbf{3}, \mathbf{1}, -\frac{1}{3}\right)$



+ SMEFT $\mathcal{L}\simeq \frac{y_q y_d y_1}{m_Q m_D} (\overline{q_L} d_R H) \varphi^2$

• LEFT
$$C_{q\varphi}^{S(P),sb} \simeq \left(y_q^2 y_d^3 y_1 \pm y_q^{3*} y_d^{2*} y_1^*\right) \frac{v \,\mathcal{O}_{q\varphi}^{S(P),sb}}{\sqrt{2}m_Q m_D} \quad \text{with } \mathcal{O}_{q\varphi}^{S(P),sb} = \frac{1}{2} (\overline{s}(\gamma_5)b) \varphi^2$$

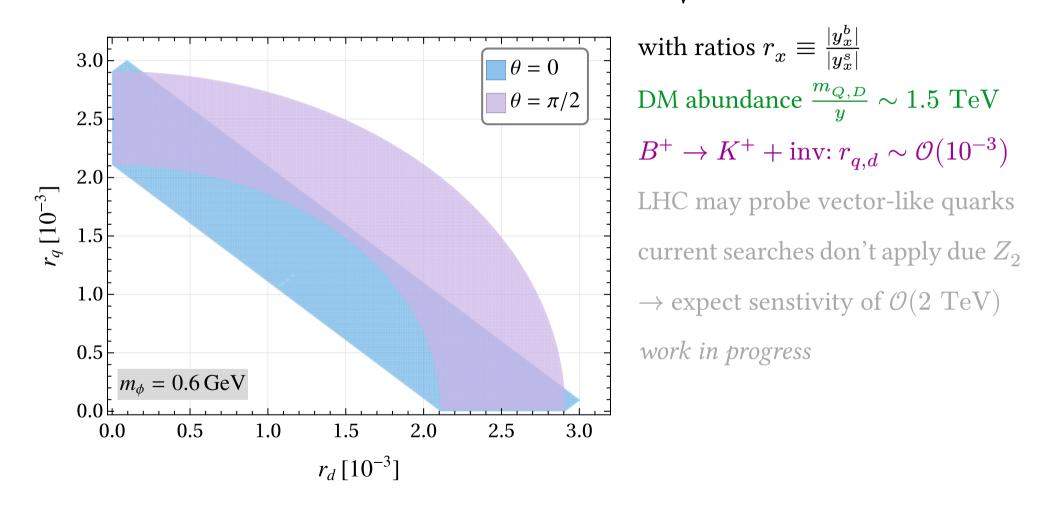

+ $C^{S,sb}_{q\varphi}$ and $C^{P,sb}_{q\varphi}$ are independent


[He, Ma, MS, Valencia, Volkas 2403.12485] Light physics

[He, Ma, MS, Valencia, Volkas 2403.12485]

- dark matter abundance set by annihilation to light mesons
- preferred DM mass range, $500~{\rm MeV} < m_{\varphi} < 900~{\rm MeV}$

Light physics


- Migdal effect allows to test DM
- PandaX-4T constrains Wilson coeff's

$$-0.07 \lesssim \frac{C_{d\varphi}^{S,dd}}{C_{d\varphi}^{S,ss}} \lesssim -0.02$$

Model will be further constrained by
 next generation DM direct detection experiments.

[He, Ma, MS, Valencia, Volkas 2403.12485]

Wilson coefficients parametrized by $|C_{d\varphi}^{S(P),sb}| \approx \frac{1}{2} |C_{d\varphi}^{S,ss}| \sqrt{r_d^2 + r_q^2 \pm 2r_d r_q \cos \theta}$

Light physics

Take-away messages

- Viable DM and sterile neutrino explanations of excess in $B^+ \to inv$ for $\Lambda_{\rm NP} \sim \mathcal{O}(1-10)~{\rm TeV}$
- $B \rightarrow K + \text{invisible}$ is a new probe for GeV-scale new physics
- This is the first measurement...

We can look forward to further interesting results from $B \rightarrow K + \text{invisible}$:

- other branching ratio measurements $B \to K^{(*)}$ +invisible
- more details on missing invariant mass distribution

Take-away messages

- Viable DM and sterile neutrino explanations of excess in $B^+ \to inv$ for $\Lambda_{\rm NP} \sim \mathcal{O}(1-10)~{\rm TeV}$
- $B \rightarrow K + \text{invisible}$ is a new probe for GeV-scale new physics
- This is the first measurement...

We can look forward to further interesting results from $B \rightarrow K + \text{invisible}$:

- other branching ratio measurements $B \to K^{(*)}$ +invisible
- more details on missing invariant mass distribution

Thank you!

Appendix

UV completions of sterile neutrino operators

Appendix

UV completion of scalar operator – electroweak doublet $\eta \sim (1, 2, -\frac{1}{2})$

$$\overline{L}N\eta + \overline{Q}\tilde{\eta}d \rightarrow \left(\overline{L}N\right)\left(\overline{Q}d\right) + \left(\overline{L}\gamma_{\mu}L\right)\left(\overline{N}\gamma^{\mu}N\right) + \left(\overline{Q}\gamma_{\mu}Q\right)\left(\overline{d}\gamma^{\mu}d\right)$$

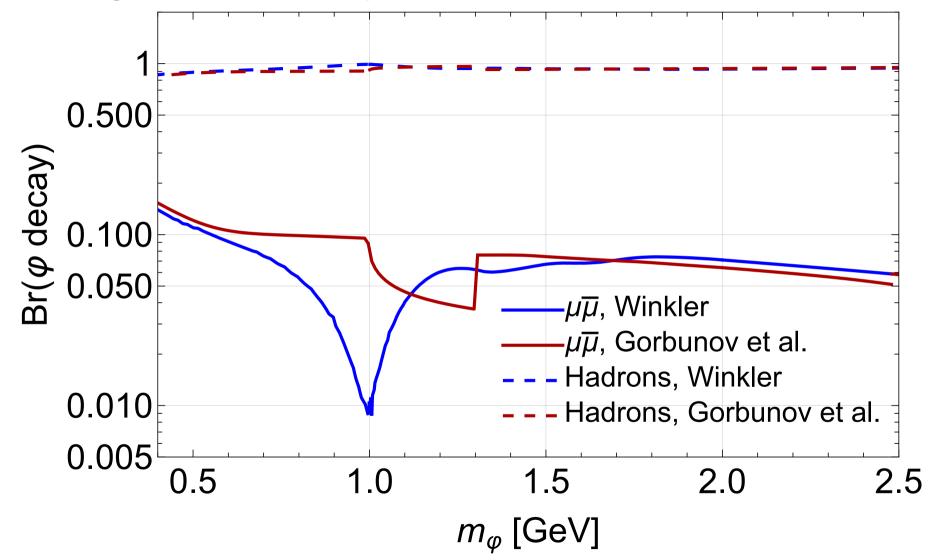
constraints from

- $B_s \overline{B_s}$ mixing
- lepton flavour universality in $\ell_i \rightarrow \ell_i + \text{invisible}$

UV completion of vector operator – leptoquarks

$$\widetilde{R_2} \sim \left({f 3}, {f 2}, - rac{1}{6}
ight)$$
 $S_1 \sim \left({f 3}, {f 1}
ight)$

$$\overline{Q}\widetilde{R_2}N \rightarrow \Bigl(\overline{Q}\gamma_\mu Q\Bigr)\Bigl(\overline{N}\gamma^\mu N\Bigr)$$


- could generate $\mathcal{O}^{\{Ld\}}$
- $B_s \overline{B_s}$ mixing only at 1-loop

$$S_1 \sim \left({f 3}, {f 1}, {f 1}
ight)$$

$$\overline{N^c}S_1d \to \Bigl(\overline{d}\gamma_\mu d \Bigl) \Bigl(\overline{N}\gamma^\mu N \Bigr)$$

- could generate \mathcal{O}^{eu} , $\mathcal{O}^{LQ(1,3)}$, $\mathcal{O}^{LeQu}(1,3)$
- $B_{s} \overline{B_{s}}$ mixing only at 1-loop

Branching ratio uncertainty

Appendix