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+ 𝛬CDM…



WHAT’S GOING ON?
➤ What happens as we approach the Planck scale? 

➤ What happened at the early Universe? 

➤ How do we go from an effective theory like the SM to a more  
fundamental one? 

➤ How are the gauge, Yukawa  
and Higgs sectors related at  
a more fundamental level? 

➤ Why/how are the elementary  
particle masses so different? 

➤ Is there more than one Higgs, more scalars? 

➤ What about flavor? 

➤ Where is the new physics?



HOW DO WE GO BEYOND THE SM?

Grand Unified Theory?

Strings?
M theory?

LQG?

Standard Model

SUSY? 

More particles?
Higgses?

Something 
else...

νR

More 
symmetries?

More 
interactions?

U(1)? Broken 
symmetries?

l

More space-time
dimensions?

Dark Matter

• Theories 
• top-down 
• bottom-up 

• They should meet 
somewhere



HOW DO WE MOVE UP (OR DOWN) IN ENERGY?
➤ We know how a QFT behaves at different scales through the 

renormalization group RG 

➤ The theory has the same structure at different energy scales, but the 
parameters — couplings and masses — change with energy 

➤ Related to scale invariance and conformal invariance

�(g) = µ
@g

@µ
�(�) = µ

@ lnZ

@µ

Conformally invariant

Scale invariant

Scale invariance appears 
in many physical systems



HOW TO GO BEYOND THE STANDARD MODEL (BSM)?
➤ Traditional way  ⇒  addition of symmetries  

                                  N=1 SUSY                                                         

➤ Very effective, but too many free parameters 

➤ Complementary approach 
Look for renormalization group invariant relations 
at high energies   
                            GUT ⇒ Planck 

➤ Resulting theory has few free parameters ∴  very predictive

 Can get messy…

Relates gauge and Yukawa sector 
Predictions for 3rd generation masses



RENORMALIZATION GROUP INVARIANTS RGI
➤ Search for more fundamental theory ⇒ less parameters 

Renormalization Group Invariants (RGI) 
 
 
 

➤ Equivalent to solve reduction equations 

Reduced theory has only one coupling and its beta 
function 
Reduction ➝ power series solution  
Uniqueness of solution can be studied at one-loop 
  Zimmermann (1985); Zimmermann, Oehme, Sibold (1984-1985)

�(g1, . . . , gN ) = 0

µd�/dµ =
NX

i=1

�i @�/@gi = 0

�g (dgi/dg) = �i

i = 1, . . . , N



REDUCTION OF COUPLINGS
➤ Couplings related to a primary coupling 

totally reduced — all couplings depend on one 
partially reduced — some couplings depend on one 

➤ Can be applied to SUSY and non-SUSY models 

➤ SM analyzed — results now ruled out, still impressive 
                                                      Kubo, Sibold, Zimmermann (1984-1987) 

➤ 2HDM analyzed Denner (1990) — now re-analysed: 
possible to have one-loop reduced equations in type II 2HDM 
at a high-scale  boundary               May Pech, MM, Patellis, Zoupanos (2023) 

➤ Under some conditions SUSY unification models might be            
finite



FINITENESS = SCALE/CONFORMAL INVARIANCE

➤ All-loop finiteness ⇒ β= 0 
to all orders in perturbation theory 

➤ Scale/conformal invariance  
Conformal and scale invariant = Yukawa couplings  
Scale invariant = Soft breaking terms 
Do not depend on energy scale 
Based on RGI and reduction of couplings 

➤ Gives UV completion of the QFT 

➤ Reduces greatly the number of free 
parameters  
⇒ new symmetries 

➤ Partial reduction ⇒ predictions for 
3rd generation masses



➤ Prediction for top mass — very clean  
 

                    
 
 
 
 
 

➤ Prediction for Higgs mass — depends on soft breaking terms,  
also very restricted                                                                                         

             Mtopth~ 178 GeV                1993    Kapetanakis, M.M., Zoupanos 
                m_bot also predicted, large tan beta             
              Mtopexp = 176 ± 18 GeV      1995 
 
               Mtopth  ~ 172.5 GeV            2007     Heinemeyer, M.M.,Zoupanos                                                                         
             Mtopexp  = 173.1 ± .09 GeV   2013 

FINITE  SU(5) THEORIES — THIRD GENERATION

          MHiggsth ~ 121 - 126 GeV      2008, 2013     Heinemeyer, M.M., Zoupanos 

          MHiggsexp = 126 ± 1 GeV           2013     



FINITESS  ⇒ GAUGE YUKAWA UNIFICATION
Grand Unified SUSY N=1, no gauge anomalies: 

W =
1

2
mij �i �j +

1

6
Cijk �i �j �k

�(1)
g = 0 = �j(1)

i

X

i

T (Ri) = 3C2(G) ,
1

2
CipqC

jpq = 2�ji g
2C2(Ri)

Restricts the gauge group 
Relates gauge and Yukawa couplings 
If finite to all orders ⇒ Conformal invariance 
May imply extra symmetries, in this case discrete 

Just analyze one-loop solution 
One-loop finite ⇒ two-loop finite 
Isolated and non-degenerate solution ⇒ 
all-loop finite                Lucchesi, Piguet, Sibold

β= 0 non-renormalization of coupling constants, not complete UV finiteness where field renormalization is absent

T Dynkin index of irrep, C2 Casimir invariant of group          Cijk Yukawa couplings, g gauge coupling



SUSY BREAKING SSB
➤ Explicit/soft breaking  >100 new free parameters 😫 

 

➤ SSB can also be restricted through RGI ⇒ β = 0  

➤ Leads to a sum rule among scalars and gauging masses 
 

➤ Breaks conformal invariance BUT remains scale invariant!

�LSB =
1

6
hijk �i�j�k +

1

2
bij �i�j +

1

2
(m2

)
j
i �

⇤ i�j +
1

2
M ��+H.c.

one- and two-loop finiteness conditions known 
all-loop finiteness possible 
                                             Kazakov, Jack, Jones, Pickering…

( m2
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2
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2
k )/MM

† = 1 +
g
2

16⇡2
�(2) +O(g4)

Depends on the gaugino mass scale M  
Scale invariant but not conformal 
 Kazakov et al; Jack, Jones et al; Yamada; Hisano, Shifman; Kobayashi, Kubo, 
Zoupanos



The one- and two-loop finiteness conditions imply following 
matter content: 
                         
3 generations, 4 pairs of Higgs doublets one field in the adjoint 

➤ Soft scalar masses obey sum rule 

➤ No proton decay 

➤ At GUT scale finiteness is broken  ⇒ MSSM  
finiteness broken 

➤ Rotation of FUT Higgs sector ⇒ 2 Higgs doublets of 
MSSM maximally coupled to third generations

3 5 + 3 10 + 4 (5 + 5) + 24

SU(5) FINITE UNIFIED MODELS



     SU(5) FUT

Yt

Yb

Yτ

MSUSYMW

 Y2t = kt g2 
Y2b,τ = kb g2

MSSMSM

mt = Yt vu               vu/  vd = tan β                         
mb,τ = Yb,τ vd           vd = mτexp /Yτ 

Finite soft breaking terms included 
⇒ SUSY corrections to Yb and Ytau 
⇒ soft SUSY spectrum

Results confronted to experimental 
constraints ⇒  
gives available parameter space



INTERPLAY HIGH-LOW ENERGIES: SEARCHES AT FUTURE COLLIDERS
GUT scale, Finiteness gives: 

Relations between gauge-Yukawa couplings 
Sum rule for soft breaking terms 
⇒ Very few free parameters 

Require: 
Absence of proton decay 
Proper unification of gauge couplings 
MSSM 

Low energies: 
Radiative eW symmetry breaking 
Include SUSY radiative corrections 
Quark and Higgs masses in experimental range  
Compliance with B physics (not trivial) 

Large tan 𝞫 
High SUSY spectrum > 1 TeV 
Challenging for future colliders 

 Heinemeyer, Kalinowski, Kotlarski , Mondragon, Patellis, Tracas, Zoupanos (2021)

B constraints: 
BR (b → s𝛾) 
BR (Bs → 𝜇+𝜇-) 
BR (Bu → 𝜏𝜐) BS 
𝛥 M BS SM/MSSM 



Figure 3: The left (right) plot shows the spectrum of the SU(5)-FUT (with µ < 0) model

after imposing the constraint Mh = 125.1 ± 3.1(2.1) GeV. The light (green) points are the

various Higgs boson masses, the dark (blue) points following are the two scalar top and bottom

masses, the gray ones are the gluino masses, then come the scalar tau masses in orange (light

gray), the darker (red) points to the right are the two chargino masses followed by the lighter

shaded (pink) points indicating the neutralino masses.

scalar tau. Some parts of the allowed spectrum of the lighter scalar tau or the lighter
charginos/neutralinos might be accessible at CLIC with

p
s = 3 TeV.

In Table 1 we show two example spectra of the SU(5)-FUT (with µ < 0) which span
the mass range of the parameter space that is in agreement with the B-physics observables
and the Higgs-boson mass measurement. We give the lightest and the heaviest spectrum
for �Mh = 2.1 and �Mh = 3.1, respectively. The four Higgs boson masses are denoted
as Mh, MH , MA and MH± . m

t̃1,2
, m

t̃1,2
, mg̃, m⌧̃1,2 , are the scalar top, scalar bottom,

gluino and scalar tau masses, respectively. m
�̃
±
1,2

and m
�̃
0
1,2,3,4

denote the chargino and

neutralino masses.

We find that no point of SU(5)-FUT (with µ < 0) fulfills the strict bound of Eq. (77).
(For our evaluation we have used the code MicroMegas [128–130].) Consequently, on a
more general basis a mechanism is needed in our model to reduce the CDM abundance in
the early universe. This issue could, for instance, be related to another problem, that of
neutrino masses. This type of masses cannot be generated naturally within the class of
finite unified theories that we are considering in this paper, although a non-zero value for
neutrino masses has clearly been established [103]. However, the class of FUTs discussed

23
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Figure 2: The lightest Higgs mass, Mh, as a function of M for the FUT model with µ < 0. The

green points are the ones that satisfy the B-physics constraints.

range where the unified gaugino mass varies from 0.5 TeV . M . 9 TeV. The green points
include the B-physics constraints. One should keep in mind that these predictions are
subject to a theory uncertainty of 3(2) GeV [118]. Older analysis, including in particular
less refined evaluations of the light Higgs boson mass, are given in Refs. [46, 124,125].

The allowed values of the Higgs mas put a limit on the allowed values of the SUSY
masses, as can be seen in Fig.3. In the left (right) plot we impose Mh = 125.1 ±

3.1(2.1) GeV as discussed above. In particular very heavy coloured SUSY particles
are favoured (nearly independent of the Mh uncertainty), in agreement with the non-
observation of those particles at the LHC [126]. Overall, the allowed coloured SUSY
masses would remain unobservable at the (HL-)LHC, the ILC or CLIC. However, the
coloured spectrum would be accessible at the FCC-hh [127], as could the full heavy Higgs
boson spectrum. On the other hand, the lightest observable SUSY particle (LSOP) is the

22

             FUTB — 3rd generation 
1 free parameter in gauge-Yukawa sector  
2 free parameters in soft SUSY breaking

Higgs mass range determined by finiteness, sum rule,  
B physics constraints and radiative top contributions to 
Higgs mass ⇒  heavy spectrum

These are now 
related!



➤ SU(5) models extensively studied     Rabi et al; Kazakov et al;   Quirós et al;   MM, Zoupanos et a  

➤ One coincides with a non-standard Calabi-Yau                  MM, Zoupanos 

➤ Finite string theories and criteria for branes                        Ibáñez 

➤ Models with three generations           Babu, Enkhbat, Gogoladze;  MM & Jiménez; Estrada, MM, Patellis, Zoupanos 

➤ SU(N)k   models finite ⟺ 3 generations 
only SU(3)3 compatible with phenomenology                  MM, Ma, Zoupanos                                               

➤ Relations non-commutative theories and finiteness          Jack, Jones                                                                                    

➤ Proof of conformal invariance  (dimensionless part)  Kazakov, Bork; MM & Reyes                   

➤ Relation between finiteness and QFT in curved space-time & inflation                                                                                                                
Elizalde, Odintsov, et al                                                                                           

➤ Recent reviews                    Heinemeyer, M.M, Tracas, Zoupanos, Phys.Rept. 814 (2019); Fortsch.Phys. 68 (2020)                                                                                                       

 

MANY ASPECTS OF FINITENESS STUDIED



SUPERPOTENTIAL

➤ The SU(5) superpotential of possible finite models is              
 

 
3 generations, 4 pairs of Higgs doublets and one field in the adjoint 

                                

ℋ̄ai = 5 , ℋi
a = 5 , Ψ̄a′￼i = 5 , Xij

a′￼
= 10 , Σi

j = 24

3 5 + 3 10 + 4 (5 + 5) + 24

4.1 General SU(5) FUT superpotential and the second finite-

ness condition

For the above-mentioned matter content we will use the following notation: 3  ̄a0i

superfields in the 5̄ irrep characterise the down-type antiquarks, charged leptons and
neutrinos, 3 X

ij

a0 superfields in the 10 represent the up-type quarks and antiquarks,
and the down-type quarks and the charged antileptons, 4 H

i

a
and 4 H̄ai in the 5

and 5̄ irrep respectively are assigned to the Higgs fields, and ⌃i

j
is in the adjoint

representation 24. Throughout the present work the indices i, j, k, . . . will be used
for the gauge group representation, the primed indices a

0
, b

0
, c

0
, . . . for the three

fermion generations and the non-primed a, b, c, . . . label the four Higgs fields Ha and
H̄a.

The most general superpotential with the above mentioned content, consistent
with preserved R-parity is

(24)
WSU(5)�R = ḡa0b0a ̄b0iX

ij

a0 H̄aj +
1

2
ga0b0a✏ijklmX

ij

a0X
kl

b0 H
m

a
+ fabH̄ai⌃

i

j
H

j

b

+
1

3!
p⌃i

j
⌃j

k
⌃k

i
+

1

2
�
(⌃)⌃i

j
⌃j

i
+mabH̄aiH

i

b
.

Imposing the second finiteness condition, i.e. taking the anomalous dimensions
equal to zero (19), to the most general superpotential the following system of equa-
tions arises [6]:

�H̄ : 4ḡijaḡ
ijb +

24

5
facf

bc + 4qiacq
ibc =

24

5
g
2
�
b

a
,

�H : 3gijag
ijb +

24

5
fcaf

cb +
24

5
hiah

ib =
24

5
g
2
�
b

a
,

� ̄ : 4ḡkiaḡ
kja +

24

5
hiah

ja + 4g0
ikl
g
0jkl =

24

5
g
2
�
b

a
,

�X : 2ḡikaḡ
jka + 3gikag

jka + qiabq
jab + g

0

kli
g
0klj =

36

5
g
2
�
j

i
,

�⌃ : fabf
ab +

21

5
pp

⇤ + hiah
ia = 10g2 . (25)

Notice that in the case R-parity is preserved some of the couplings in (25), namely
h, g

0 and q, will not appear. In order to be able to obtain an all-loop finite theory,
isolated and non-degenerate solutions to such a system are required, which implies
that the superpotenial has more symmetry.

9

g̅ijk = down Yukawa couplings, gijk = up Yukawa couplings



WHAT ABOUT FLAVOR?  3 GENERATIONS

these phases are in principle free parameters. A proposed solution in ref. [20] was to
implement the phases through complex vev’s. Here, we follow a different strategy,
based on refs. [81, 82]. The idea consists in quantifying the minimum number of
independent phases, and then address the question of where they are placed in the
Yukawa matrices, by performing phase invariant products. This way, we attempt
to make a deeper analysis of the reduction of couplings in FUTs, by including the
minimum number of phases in the Yukawa matrices in a mathematically consistent
way, in order to characterise the Yukawa couplings both by their magnitude as well
as their phases.

Ref. [19] offers a classification of eight textures that mass matrices may take to
fulfill the requirement of cancellation of the off diagonal terms of the anomalous
dimensions (25). This classification is particularly useful when considering FUT
models that express cyclic symmetries. This classification is divided into two block
of four matrices V

(i)
3 , in which the quarks couple only to three Higgs pairs

�
Ha, H̄a

�
,

and another four matrices V
(i)
4 , where they couple to the four Higgs pairs. The

subscripts 3 and 4 in V
(i)
3 and V

(i)
4 denote the number of Higgs coupled, whereas the

superscript (i), with i = 1, . . . , 4, classifies the four different matrices in each block.
For the case of three pairs of Higgs coupled to the fermions, the matrices are:

V
(1)
3 =

0

@
g111 hH

5
1i g123 hH

5
3i g132 hH

5
2i

g213 hH
5
3i g222 hH

5
2i g231 hH

5
1i

g312 hH
5
2i g321 hH

5
1i g333 hH

5
3i

1

A , V
(2)
3 =

0

@
g112 hH

5
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5
1i 0

g211 hH
5
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5
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5
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5
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5
3i

1

A ,

V
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0

@
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5
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5
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5
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5
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5
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5
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(4)
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0
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5
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5
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5
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5
2i g333 hH

5
3i

1

A ,

(73)
while for the case where the four pairs of Higgs couple to the fermions they are:
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5
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5
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5
3i

1
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5
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5
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5
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5
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5
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5
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5
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5
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5
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5
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5
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1

A .

(74)
These matrices are constructed using the ga0b0a couplings and the Ha Higgs fields of
Mu. The Md matrices are calculated in the same way, substituting the corresponding
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                                                                           Coupled to 4 Higgs doublets

    Classification of SU(5) FUT with off-diagonal 𝛾 done already 
                                       Coupled to 3 Higgs doublets

                   Top and down mass matrices with same structure                                                    Babu, Enkhbat, Gogoladze (2003)



2-LOOP FINITE MODEL — V41

Zn  ̄1  ̄2  ̄3 X1 X2 X3 H1 H2 H3 H4 H̄1 H̄2 H̄3 H̄4 ⌃
Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Z8 4 3 5 0 7 1 0 2 6 1 4 6 2 5 0

Table 5: Symmetries related to (80).

The following parametric solutions to (25) are found for this model:

|g124|
2 = |g214|

2 =
4

5
g
2
5 , |g222|

2 =
2

5
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2
5 , |g231|

2 = |g321|
2 =

1
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8g25 � 5 |g111|
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,
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6

5
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5 , |ḡ111|
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2 =

3

20
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,

|ḡ214|
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3

4
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2
, |ḡ222|

2 = |ḡ231|
2 =

3
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2
5 , |ḡ321|

2 = �
3

20
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2g25 � 5 |g111|

2�
,

|ḡ333|
2 =

9

10
g
2
5 , |f22|

2 =
3

4
g
2
5 , |f33|

2 =
g
2
5

4
, |p|

2 =
15

7
g
2
5 ,

|g132|
2 = |g312|

2 = |ḡ132|
2 = |ḡ312|

2 = |f11|
2 = |f44|

2 = 0 . (80)

By imposing the positivity conditon to the squared norm of the couplings, we find
the following constraint for |g111|

2:

2

5
g
2
5  |g111|

2


8

5
g
2
5 . (81)

Solutions with extra zero textures are found in the limiting values for the coupling
|g111|

2. For instance, when |g111|
2 = 8

5g
2
5, the couplings g321, g231, ḡ111 and ḡ124 are

zero, leading to the following mass textures:

Mu =

0

@
g111 hH

5
1i g124 hH

5
4i 0

g214 hH
5
4i g222 hH

5
2i 0

0 0 g333 hH
5
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1
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1

A , (82)

clearly incompatible with phenomenology. Another solution is found when |ḡ321|
2 =

0, which leads to |g111|
2 = 2

5g
2
5 and to the following mass matrices:

Mu =

0

@
g111 hH

5
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5
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1
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⌦
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ḡ124

⌦
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↵
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ḡ214
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H̄45

↵
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⌦
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↵
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↵

0 0 ḡ333

⌦
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↵

1

A , (83)
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We find the following symmetries ⇒  
parametric relations among couplings ⇒ 2-loop solution

up-type 
Yukawa

down-type 
Yukawa

evaluating at the end points 
implies more symmetry = more zeroes

Estrada, MM, Patellis, Zoupanos, Fortschr. Phys. 2024, 24001



➤ We find the following symmetries ⇒ isolated solution 
unique relation among couplings ⇒  all-loop finite solution

➤ For the SSB ⇒ sum rule ⇒ 3 free  parameters

ALL-LOOP FINITE MODEL — V42

Zn  ̄1  ̄2  ̄3 X1 X2 X3 H1 H2 H3 H4 H̄1 H̄2 H̄3 H̄4 ⌃
Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Z3 0 2 0 0 2 0 1 1 0 0 1 1 0 0 0
Z4 3 3 2 3 3 2 2 3 0 2 2 3 0 2 0

Table 6: Cyclic discrete symmetries of model 4.1 to obtain isolated, non-degenerate
solutions of the system of equations (25).

7.4 Model 4.1: Finite version at all orders of V(2)
4

The following model is similar to the one presented in [19], but in our case it exhibits
only cyclic symmetries. Another difference lies in the inclusion of the phases and
their position, not previously done in FUTs. We found other models also based in
cyclic symmetries and finite to all-loops with different textures to model 4.1, but it
can be shown that they all belong to the same equivalence class, so they are basically
the same model.

To ensure finiteness to all-loops, the solutions to (86) must be isolated and non-
degenerate. One such solution exhibits the symmetries presented in Table 6, where
it should be noted that they lead to |g224|

2 = |ḡ224|
2 = |f11|

2 = 0.
Under these symmetries, the superpotential is:
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The trilinear terms satisfy exactly these symmetries, but the term mabH̄aiH
i

b
breaks

them softly in order to ensure a successful doublet-triplet splitting and no fast proton
decay. This breaking does not affect the finiteness conditions, which apply only to
the trilinear terms in the superpotential.
Using the allowed couplings in (87), we obtain the following solutions:
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Since these solutions are unique, isolated and non-degenerate, the model is all-loop
finite.

7.4.1 Sum rule for squared masses of scalars

In the dimesionful sector the one-loop sum rule (17) generates 13 equations, with 16
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7.4.2 Invariant products under phase transformations

Since the finiteness conditions only restrict the squared norm of the couplings, we
address the possible phases in the least arbitrary possible way. The minimum amount
of phases needed and their positions in the mass matrices have to satisfy certain
theorems and requirements established in references [81,82], which we follow here.

For a three generation quark model, there exist several combinations of four
(P (f)

4;j1k1,j2k2
, Q4;j1k1,j2m1) or even six (P (f)

6;j1k1,j2k2,j3k3
, Q

(fff 0)
6;j1k1,j2k2,j3m1

) entries of the
Yukawa matrices that are needed to determine the position of the phases. Their
argument must be different from zero and ⇡, and remains invariant under rephasing
of the Yukawa couplings. The general form of these products is the following:
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2 = |ḡ322|
2 = |ḡ333|
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Zn  ̄1  ̄2  ̄3 X1 X2 X3 H1 H2 H3 H4 H̄1 H̄2 H̄3 H̄4 ⌃
Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Z3 0 2 0 0 2 0 1 1 0 0 1 1 0 0 0
Z4 3 3 2 3 3 2 2 3 0 2 2 3 0 2 0

Table 6: Cyclic discrete symmetries of model 4.1 to obtain isolated, non-degenerate
solutions of the system of equations (25).

7.4 Model 4.1: Finite version at all orders of V(2)
4

The following model is similar to the one presented in [19], but in our case it exhibits
only cyclic symmetries. Another difference lies in the inclusion of the phases and
their position, not previously done in FUTs. We found other models also based in
cyclic symmetries and finite to all-loops with different textures to model 4.1, but it
can be shown that they all belong to the same equivalence class, so they are basically
the same model.

To ensure finiteness to all-loops, the solutions to (86) must be isolated and non-
degenerate. One such solution exhibits the symmetries presented in Table 6, where
it should be noted that they lead to |g224|
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2 = 0.
Under these symmetries, the superpotential is:
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1 H̄4j + ḡ121 ̄2iX
ij

1 H̄1j + ḡ211 ̄1iX
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The trilinear terms satisfy exactly these symmetries, but the term mabH̄aiH
i

b
breaks

them softly in order to ensure a successful doublet-triplet splitting and no fast proton
decay. This breaking does not affect the finiteness conditions, which apply only to
the trilinear terms in the superpotential.
Using the allowed couplings in (87), we obtain the following solutions:

|g114|
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Q
(fff 0)
6;j1k1,j2k2,j3m1

= Yf,j1k1Yf,j2k2Yf 0,j3m1Y
⇤

f,j1k2
Y

⇤

f,j3k1
Y

⇤

f 0,j2m1
, (90)

where (fff 0) = (uud) or (fff 0) = (ddu). The argument of the above products
is equivalent to a system of coupled equations among the phases. Thus, once the
minimum number of phases is established it is enough to consider the same number
of products that generate a system of linearly independent equations.

For this model, the minimum number of phases is 4 among both types of Yukawa
matrices and their positions are established by constructing the following invariant
products under phase transformations and extracting their arguments:

arg (g114ḡ211g
⇤

211ḡ
⇤

114) = C1 6= 0, ⇡ , arg (g121ḡ322g
⇤

322ḡ
⇤

121) = C2 6= 0, ⇡ ,

arg (g232ḡ333g
⇤

333ḡ
⇤

232) = C3 6= 0, ⇡ , arg (g114g232g322g
⇤

121g
⇤

211g
⇤

333) = C4 6= 0, ⇡ .

(91)
These expressions are dependent on 12 Yukawa couplings, but since Yu is symmetric
there are only 10 left, of which 6 are real. Therefore we are left with the following
solutions for the phases:

arg (g333) = �C4 + arg (g114)� arg (g121)� arg (g211) + arg (g232) + arg (g322) = �3 ,

arg (ḡ211) = C1 � arg (g114) + arg (g211) + arg (ḡ114) = �̄1 ,

arg (ḡ322) = C2 � arg (g121) + arg (g322) + arg (ḡ121) = �̄2 ,

arg (ḡ333) = C3�C4+arg (g114)�arg (g121)�arg (g211)+arg (g322)+arg (ḡ232) = �̄3 .

(92)
This way we choose �3 = arg (g333), �̄1 = arg (ḡ211), �̄2 = arg (ḡ322) y �̄3 = arg (ḡ333)
to fix the phases in the mass matrices. There are various ways to distribute the four
phases, but in this analysis we choose this particular one.

7.4.3 Mass matrices

The mass matrices for this model are:

Mu =

0

@
g114 hH

5
4i g121 hH

5
1i 0

g211 hH
5
1i 0 g232 hH

5
2i

0 g322 hH
5
2i g333 hH

5
3i

1

A = 2
p
5
g5

0

@
hH

5
4i hH

5
1i 0

hH
5
1i 0 hH

5
2i

0 hH
5
2i e

i�3 hH
5
3i

1

A , (93)
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30

ALL-LOOP FINITE MASS MATRICES
➤ It is possible to find the minimum amount of phases —

rephasing invariants 
➤ The mass matrices are then:

➤ After the rotation in the Higgs sector to the MSSM basis: 
We have already substituted in these matrices the solutions found for the finiteness
conditions (88) and the complex phases, as already explained above.
After the rotation in the Higgs sector, the matrices in the MSSM basis are:

Mu =
2
p
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@
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e↵1 0 e↵2

0 e↵2 e
i�3e↵3

1
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, (95)

Md =

r
3

5
g5
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B@
e�4

e�1 0

e
i�̄1 e�1 0 e�2

0 e
i�̄2 e�2 e

i�̄3 e�3

1

CA
⌦
K̄35

↵
, (96)

where e↵i and e�i refer to the rotation angles in the up and down sector, respectively.
Notice that this is a non-minimal SUSY SU(5) model. The actual expressions for

the five dimensional operators that mediate proton decay will depend, among other
parameters, on the Yukawa couplings, the VCKM matrix elements, the soft breaking
sector, and the coloured Higgs triplet masses, and will differ from the usual minimal
SU(5) [74,87]. It is possible to estimate though, that the coloured triplets are indeed
heavier than the GUT scale in this model, similarly to the diagonal FUTA model.
In refs. [87, 88] a way to suppress these five dimensional operators in models with
several heavy triplets is outlined, in the basis where only one pair of Higgs doublets
couples to matter, similar to the scenario we present here.

7.4.4 Free parameters

Before the solution to the finiteness conditions is determined, the Lagrangian has 89
free parameters, including all the couplings, soft breaking terms, and phases, plus the
vacuum expectation values of the Higgs fields. This number is drastically reduced
after the solution to the finiteness conditons is found, both in the dimensionless and
dimensionful sectors, leaving 33 free parameters. This number is further reduced by
imposing the doublet-triplet splitting, which again has consequences in the dimen-
sionless and soft breaking sectors. The four phases that are left as free parameters
are constrained by the invariant products, as already explained, as:

�̄1 6= 0, ⇡ ; �̄2 6= 0, ⇡ ; �̄3 6= 0, ⇡ ; �3 6= 0, ⇡ ; �̄3 � �3 6= 0, ⇡ . (97)

Then, the vacuum expectation values of the Higgs fields are replaced by the
rotation angles when we go to the MSSM basis, with the constraint that the sum of
their squared values is equal to one, which eliminates one more parameter

e↵4 =
q

1� e↵2
1 � e↵2

2 � e↵2
3 , e�4 =

q
1� e�2

1 �
e�2
2 �

e�2
3 . (98)
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𝛼i, 𝛽i refer to  the rotation angles in up and down sectors respectively,                  𝛴𝛽i =𝛴𝛼i=1

Same solution  as FUTB  
for 3rd generation! 
we know it works…
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FINALLY, HOW MANY FREE PARAMETERS?
  

GUT scale  89 free parameters 
Yukawa couplings, soft breaking terms, phases, 

vev’s of the Higgs fields 

 After Finiteness solutions  
33 free parameters  

Require  doublet-triplet splitting, rotation to MSSM 
basis with constraints over angles, rephasing 

invariants 
 

Low energies:  
radiative electroweak breaking, fix m𝜏exp and SM vev give tan𝛽 

 ⇒ 12 parameters left: 
The soft breaking terms, the phases, and the rotation angles 
𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝛼1, 𝛼2, 𝛼3,  𝛽1, 𝛽2, 𝛽3, M, 𝜇 

                            Only one phase is observable 
                        ⇒ 𝜙obs, 𝛼1, 𝛼2, 𝛼3,  𝛽1, 𝛽2, 𝛽3, M, 𝜇 
          only 9 parameters left to fit masses and mixing angles



SU(3)3

➤ Trinification model beta function 

➤ Finite  ⟺ 3 generations 
 
 

➤ Only SU(5) and SU(3)3 seem to have phenomenological 
possibilities so far
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5.4. Finite SU(N)3 unification

We continue examining the possibility of constructing realistic FUTs based on product gauge groups. Consider an
N = 1 supersymmetric theory, with gauge group SU(N)1 ⇥ SU(N)2 ⇥ · · · ⇥ SU(N)k, with nf copies (number of families)
of the supersymmetric multiplets (N,N⇤, 1, . . . , 1) + (1,N,N⇤, . . . , 1) + · · · + (N⇤, 1, 1, . . . ,N). The one-loop �-function
coefficient in the renormalization-group equation of each SU(N) gauge coupling is simply given by

b =

✓
�

11
3

+
2
3

◆
N + nf

✓
2
3

+
1
3

◆✓
1
2

◆
2N = �3N + nf N . (5.27)

This means that nf = 3 is the only solution of Eq. (5.27) that yields b = 0. Since b = 0 is a necessary condition for a finite
field theory, the existence of three families of quarks and leptons is natural in such models, provided the matter content
is exactly as given above.

The model of this type with best phenomenology is the SU(3)3 model discussed in Ref. [133], where the details of
the model are given. It corresponds to the well-known example of SU(3)C ⇥ SU(3)L ⇥ SU(3)R [134–137], with quarks
transforming as

q =

 d u h
d u h
d u h

!
⇠ (3, 3⇤, 1), qc =

 dc dc dc
uc uc uc

hc hc hc

!
⇠ (3⇤, 1, 3), (5.28)

and leptons transforming as

� =

 N Ec ⌫
E Nc e
⌫c ec S

!
⇠ (1, 3, 3⇤). (5.29)

Switching the first and third rows of qc together with the first and third columns of �, we obtain the alternative left–right
model first proposed in Ref. [137] in the context of superstring-inspired E6.

In order for all the gauge couplings to be equal at an energy scale, MGUT, the cyclic symmetry Z3 must be imposed, i.e.

q ! � ! qc ! q, (5.30)

where q and qc are given in Eq. (5.28) and � in Eq. (5.29). Then, the first of the finiteness conditions (4.5) for one-loop
finiteness, namely the vanishing of the gauge �-function is satisfied.

Next let us consider the second condition, i.e. the vanishing of the anomalous dimensions of all superfields, Eq. (4.6).
To do that first we have to write down the superpotential. If there is just one family, then there are only two
trilinear invariants, which can be constructed respecting the symmetries of the theory, and therefore can be used in
the superpotential as follows

f Tr(�qcq) +
1
6
f 0 ✏ijk✏abc(�ia�jb�kc + qciaq

c
jbq

c
kc + qiaqjbqkc), (5.31)

where f and f 0 are the Yukawa couplings associated to each invariant. Quark and leptons obtain masses when the scalar
parts of the superfields (Ñ, Ñc) obtain vacuum expectation values (vevs),

md = f hÑi, mu = f hÑc
i, me = f 0

hÑi, m⌫ = f 0
hÑc

i. (5.32)

With three families, the most general superpotential contains 11 f couplings, and 10 f 0 couplings, subject to 9
conditions, due to the vanishing of the anomalous dimensions of each superfield. The conditions are the following

X

j,k

fijk(fljk)⇤ +
2
3

X

j,k

f 0

ijk(f
0

ljk)
⇤

=
16
9

g2�il , (5.33)

where

fijk = fjki = fkij, (5.34)

f 0

ijk = f 0

jki = f 0

kij = f 0

ikj = f 0

kji = f 0

jik. (5.35)

Quarks and leptons receive masses when the scalar part of the superfields Ñ1,2,3 and Ñc
1,2,3 obtain vevs as follows

(Md)ij =

X

k

fkijhÑki, (Mu)ij =

X

k

fkijhÑc
k i, (5.36)

(Me)ij =

X

k

f 0

kijhÑki, (M⌫)ij =

X

k

f 0

kijhÑ
c
k i. (5.37)
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model first proposed in Ref. [137] in the context of superstring-inspired E6.

In order for all the gauge couplings to be equal at an energy scale, MGUT, the cyclic symmetry Z3 must be imposed, i.e.

q ! � ! qc ! q, (5.30)

where q and qc are given in Eq. (5.28) and � in Eq. (5.29). Then, the first of the finiteness conditions (4.5) for one-loop
finiteness, namely the vanishing of the gauge �-function is satisfied.

Next let us consider the second condition, i.e. the vanishing of the anomalous dimensions of all superfields, Eq. (4.6).
To do that first we have to write down the superpotential. If there is just one family, then there are only two
trilinear invariants, which can be constructed respecting the symmetries of the theory, and therefore can be used in
the superpotential as follows

f Tr(�qcq) +
1
6
f 0 ✏ijk✏abc(�ia�jb�kc + qciaq

c
jbq

c
kc + qiaqjbqkc), (5.31)

where f and f 0 are the Yukawa couplings associated to each invariant. Quark and leptons obtain masses when the scalar
parts of the superfields (Ñ, Ñc) obtain vacuum expectation values (vevs),

md = f hÑi, mu = f hÑc
i, me = f 0

hÑi, m⌫ = f 0
hÑc

i. (5.32)

With three families, the most general superpotential contains 11 f couplings, and 10 f 0 couplings, subject to 9
conditions, due to the vanishing of the anomalous dimensions of each superfield. The conditions are the following

X

j,k

fijk(fljk)⇤ +
2
3

X

j,k

f 0

ijk(f
0

ljk)
⇤

=
16
9

g2�il , (5.33)

where

fijk = fjki = fkij, (5.34)

f 0

ijk = f 0

jki = f 0

kij = f 0

ikj = f 0

kji = f 0

jik. (5.35)

Quarks and leptons receive masses when the scalar part of the superfields Ñ1,2,3 and Ñc
1,2,3 obtain vevs as follows

(Md)ij =

X

k

fkijhÑki, (Mu)ij =

X

k

fkijhÑc
k i, (5.36)

(Me)ij =

X

k

f 0

kijhÑki, (M⌫)ij =

X

k

f 0

kijhÑ
c
k i. (5.37)
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5.4. Finite SU(N)3 unification

We continue examining the possibility of constructing realistic FUTs based on product gauge groups. Consider an
N = 1 supersymmetric theory, with gauge group SU(N)1 ⇥ SU(N)2 ⇥ · · · ⇥ SU(N)k, with nf copies (number of families)
of the supersymmetric multiplets (N,N⇤, 1, . . . , 1) + (1,N,N⇤, . . . , 1) + · · · + (N⇤, 1, 1, . . . ,N). The one-loop �-function
coefficient in the renormalization-group equation of each SU(N) gauge coupling is simply given by

b =

✓
�

11
3

+
2
3

◆
N + nf

✓
2
3

+
1
3

◆✓
1
2

◆
2N = �3N + nf N . (5.27)

This means that nf = 3 is the only solution of Eq. (5.27) that yields b = 0. Since b = 0 is a necessary condition for a finite
field theory, the existence of three families of quarks and leptons is natural in such models, provided the matter content
is exactly as given above.

The model of this type with best phenomenology is the SU(3)3 model discussed in Ref. [133], where the details of
the model are given. It corresponds to the well-known example of SU(3)C ⇥ SU(3)L ⇥ SU(3)R [134–137], with quarks
transforming as
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 d u h
d u h
d u h

!
⇠ (3, 3⇤, 1), qc =

 dc dc dc
uc uc uc

hc hc hc

!
⇠ (3⇤, 1, 3), (5.28)

and leptons transforming as

� =

 N Ec ⌫
E Nc e
⌫c ec S

!
⇠ (1, 3, 3⇤). (5.29)

Switching the first and third rows of qc together with the first and third columns of �, we obtain the alternative left–right
model first proposed in Ref. [137] in the context of superstring-inspired E6.

In order for all the gauge couplings to be equal at an energy scale, MGUT, the cyclic symmetry Z3 must be imposed, i.e.

q ! � ! qc ! q, (5.30)

where q and qc are given in Eq. (5.28) and � in Eq. (5.29). Then, the first of the finiteness conditions (4.5) for one-loop
finiteness, namely the vanishing of the gauge �-function is satisfied.

Next let us consider the second condition, i.e. the vanishing of the anomalous dimensions of all superfields, Eq. (4.6).
To do that first we have to write down the superpotential. If there is just one family, then there are only two
trilinear invariants, which can be constructed respecting the symmetries of the theory, and therefore can be used in
the superpotential as follows

f Tr(�qcq) +
1
6
f 0 ✏ijk✏abc(�ia�jb�kc + qciaq

c
jbq

c
kc + qiaqjbqkc), (5.31)

where f and f 0 are the Yukawa couplings associated to each invariant. Quark and leptons obtain masses when the scalar
parts of the superfields (Ñ, Ñc) obtain vacuum expectation values (vevs),

md = f hÑi, mu = f hÑc
i, me = f 0

hÑi, m⌫ = f 0
hÑc

i. (5.32)

With three families, the most general superpotential contains 11 f couplings, and 10 f 0 couplings, subject to 9
conditions, due to the vanishing of the anomalous dimensions of each superfield. The conditions are the following
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where

fijk = fjki = fkij, (5.34)
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Quarks and leptons receive masses when the scalar part of the superfields Ñ1,2,3 and Ñc
1,2,3 obtain vevs as follows

(Md)ij =
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fkijhÑki, (Mu)ij =

X

k

fkijhÑc
k i, (5.36)
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WHAT ABOUT NEUTRINO MASSES, DARK MATTER, ETC?

➤ SU(5) models: 
Cold DM 
LSP is neutralino 
⇒ overabundance 

➤ Neutrino masses may be 
incorporated by breaking R 
symmetry ⇒  
gravitino Dark Matter 

➤ Other mechanisms? 
thermal inflation?  

➤ g-2 like in SM

➤ SU(3)3 models: 
𝜈R are present 

➤ Neutrino masses may be 
generated by seesaw or 
radiatively 

➤ Depending on the breaking of 
SU(3)3  
DM may be neutralino  
(or scalar?) 

➤ Neutralino DM overabundance

Flavor Structure may change  the above! 



CONCLUSIONS AND OUTLOOK

➤ Reduction of couplings finiteness 
powerful principle implies Gauge 
Yukawa Unification  

➤ Conformal or scale invariant theory 

➤ SSB terms satisfy a sum rule 
among soft scalars 

➤ SSB same as anomaly mediated 
scenario 

➤ Finiteness reduces greatly number 
of free parameters completely finite 
theories SU(5) 

➤ Very predictive

➤ Flavor 3 generation models 
2-loops: Yukawa couplings determined within a 
range 
All-loops: Yukawa couplings completely 
determined 

➤ Leads to viable mass textures 

➤ Drastic reduction in number of 
free parameters 

➤ Free parameters come from 
Higgs sector, SSB and phases  

➤ More fundamental theory?

    How can we restrict phases?  CP violation? 
    Higgs sector?   Flavor processes? 
    Dark matter?  Inflation? 



Thank you!


