

Compact Colliders Of Tomorrow: The Cool Copper Collider & The Muon Collider

Precision Electroweak to Discoveries at the Energy Frontier

based on US Snowmass 2021-22 + 2023 Particle Physics Project Prioritization Panel (P5) discussions

Report of the Snowmass 2021 $\mathrm{e^+e^-}\text{-}\mathrm{Collider}$ Forum

Maria Chamizo Llatas, Sridhara Dasu, Ulrich Heintz, Emilio Nanni, John Power, Stephen Wagner

https://web.slac.stanford.edu/c3/

Muon Collider Forum Report

Forum Conveners: K.M. Black¹, S. Jindariani², D. Li³, F. Maltoni^{4,5}, P. Meade⁶, and D. Stratakis²,

https://www.muoncollider.us/ https://muoncollider.web.cern.ch/

Report of the Snowmass'21 Collider Implementation Task Force

Thomas Roser (chair)¹, Reinhard Brinkmann², Sarah Cousineau³, Dmitri Denisov¹, Spencer Gessner⁴, Steve Gourlay⁵, Philippe Lebrun⁶, Meenakshi Narain⁷, Katsunobu Oide⁸, Tor Raubenheimer⁴, John Seeman⁴, Vladimir Shiltsev⁹, Jim Strait⁹, Marlene Turner⁵, and Lian-Tao Wang¹⁰

Colliders @ the Energy Frontier!

CERN Plan A

18-Oct-24

Sridhara Dasu (dasu@hep.wisc.edu)

Why go to new Colliders?

Standard model of particle physics works well at the LHC scales, although some key aspects of observed cosmological phenomena are left unexplained.

Yes, we are in the dark.

gravity effects significant

desert

 10^{+19}

GeV

 10^{+3}

1

 10^{-6}

electroweak symmetry-breaking

baryon masses : flavour physics

nuclear energy levels

atomic energy levels

Higgs is Central

First Fermions discovered were electrons in 19th century

top S С strange photon qluon Higgs boson, electron neutrino boson muon neutrino **First Vector-bosons** muon discovered were photons tau neutrino also in 19th century

First Scalar boson discovered, the Higgs, was in 2012!

Higgs is Edifice on which the **Standard Model** is built.

Higgs Will Likely Play a Central Role in guiding us out of this Darkness

Particles & Interactions of The Standard Model

Higgs Field is Special Electro-Weak Symmetry Breaking

50 years ago, gauge theory unified electro-weak interactions, but could not

accommodate non-zero masses for W[±] & Z

Introduction of a doublet of complex scalar fields with **peculiar** potential provided masses for W^{\pm} & Z and left γ massless!

Coupling to Higgs field provides masses to matter particles!!

$$\mathcal{L} = |D_{\mu}\Phi|^2 - \mu^2 \Phi^2 - \lambda \Phi^4$$

For $\mu^2 < 0$, minimum $\upsilon = \sqrt{-\frac{\mu^2}{2\lambda}}$

$$\phi = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

The remnant fourth field degree of freedom is the Higgs Boson discovered in 2012

> Confirming the form of the potential requires measuring di-higgs production

Higgs Central to Many Fundamental Topics

Percent level Higgs couplings deviations from SM values → BSM physics at 10 TeV e⁺ e⁻ Higgs Factory → Energy Frontier (10 TeV) Muon Collider

Higgs Boson Couplings, Production and Decays

Current Status of Golden Channels @ LHC

Our Higgs boson data sets are enabling detailed studies of the SM

Current Status of Higgs Couplings

What's Next? Sub-percent Level Higgs Couplings -> 10 TeV BSM

Can we use precision measurements to indirectly probe new physics at higher energies? Are higgs couplings to SM particles modified?

8-Oct-24

Why an electron-positron collider?

Figure 24: Reconstructed Higgs mass spectrum together with the sum of underlying background for the *Model Independent Analysis* for the $\mu\mu X$ -channel (top) and eeX-channel (bottom). The polarisation mode is $e_L^- e_R^+$. The lines show the fits using the Simplified Kernel Estimation fitting formula to the signal and a polynomial of second order to the background as explained in the text.

Recoil mass at electron positron collider

Higgs to anything over background

Colliders Of Tomorrow

Many Opportunities at the Energy Frontier

Implementation Task Force Evaluated Collider Types

Circular Colliders e+e-

- From $\sqrt{s} = M_Z \to M_{WW} \to M_{Z+H} \to M_{tt}$
- Tera-Z, millions of H very high luminosity
- "Upgrade" to pp-machine for high energy
 Proton Colliders (FCC-hh, SPPS/China ~100 TeV, 10s ab⁻¹)
 Linear Colliders e⁺e⁻
- Polarization, Energy Reach
- From $\sqrt{s} = M_Z \rightarrow M_{WW} \rightarrow M_{Z+H} \rightarrow 550 \text{ GeV}$
- Upgraded / Expanded facilities: $\sqrt{s} \rightarrow 3 \text{ TeV}$
- Advanced technologies: $\sqrt{s} \rightarrow 15 \text{ TeV}$ (much R&D needed)

Muon Colliders (10 TeV, 10 ab⁻¹)

Revived interest in high-energy option due to recent advances

Collider	Type
FCC-ee (0.24 TeV)	Circular
CEPC (0.24 TeV)	Circular
CERC (0.24 TeV)	Circular
ILC (0.25 TeV)	Linear
CLIC (0.38 TeV)	Linear
CLIC (3 TeV)	Linear
C^{3} (0.25 TeV)	Linear
ReLiC (0.24 TeV)	Linear
ERLC (0.24 TeV)	Linear
ILC (3 TeV)	Linear
C^3 (3 TeV)	Linear
ReLiC (3 TeV)	Linear
WFA (3 TeV)	Linear
WFA-flat (15 TeV)	Linear
WFA-round (15 TeV)	Linear

Lepton collider Luminosity vs \sqrt{s} Landscape

Luminosity / Power vs Energy from ITF

Points computed from proponent submitted parameters table

Uncertainty band is ITF judgement based on many considerations: technical design status, risk assessment, ...

With 5 y R&D could get physics rolling by 2040 for ~\$10B

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
$FCC-ee^{1,2}$	0.24	7.7(28.9)	0-2	13-18	12-18	290
	(0.09-0.37)					
$CEPC^{1,2}$	0.24	8.3(16.6)	0-2	13-18	12-18	340
	(0.09-0.37)					
ILC ³ - Higgs	0.25	2.7	0-2	$< \! 12$	7-12	140
factory	(0.09-1)					
CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
factory	(0.09-1)					
CCC^3 (Cool	0.25	1.3	3-5	13-18	7-12	150
Copper Collider)	(0.25-0.55)					
CERC ³ (Circular	0.24	78	5-10	19-24	12-30	90
ERL Collider)	(0.09-0.6)					
ReLiC ^{1,3} (Recycling	0.24	165 (330)	5-10	> 25	7-18	315
Linear Collider)	(0.25-1)					
$ERLC^3$ (ERL	0.24	90	5-10	> 25	12-18	250
linear collider)	(0.25-0.5)					
XCC (FEL-based	0.125	0.1	5-10	19-24	4-7	90
$\gamma\gamma$ collider)	(0.125 - 0.14)					
Muon Collider	0.13	0.01	>10	19-24	4-7	200
Higgs Factory ³		Sridhara Dasu (d	asu@hen wisc ed	n)		

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
Muon Collider	10	20 (40)	> 10	$>\!25$	12-18	~300
	(1.5-14)					
LWFA - LC	15	50	> 10	$>\!\!25$	18-80	~ 1030
(Laser-driven)	(1-15)					
PWFA - LC	15	50	> 10	> 25	18-50	~ 620
(Beam-driven)	(1-15)					
Structure WFA	15	50	>10	> 25	18-50	$\sim \!\! 450$
(Beam-driven)	(1-15)					
FCC-hh	100	30(60)	>10	> 25	30-50	~ 560
SPPS	125	13 (26)	> 10	> 25	30-80	~ 400
	(75-125)					

Higgs Factory Physics Timeline vis-à-vis Integrated Luminosity

Caveat - run plans are adjustable; start of physics times are different

- Technically feasible times: ILC < 12y, FCC-ee, CLIC, CEPC, C3 : 13-18y
 - ILC "shovel ready" + C3 Short R&D –potential for earliest start
 - FCC-ee, CLIC post HL-LHC
- Circular colliders have shorter runs, higher luminosity
- Linear collider runs have access to polarization and higher energy
- Both provide good precision on Higgs Couplings & EWK

Т0			T+5		T+10			T+1	5		T+20			٦	+25			T+30)			
	150/a	b	10/ab	5/ab		1	7/ab															
	Mz		2Mw	240 GeV		2	2mtop		mH													
100/	ab 6	′ab		10	0/ab				1/ab-1													
Mz	2	٧w		24	0GeV				2mtop													
			2/ab			0.1/ab	0.1/ab															
	240 GeV M7			MZ	2mtop			4/ab 500 GeV							8/ab 1 TeV							
		1	1.1/ab				3.	5/ab	5.6/ab													
		38	0 GeV				1.	5 TeV						3 T	eV							
	T0 100/a Mz	T0 150/a Mz 100/ab 6/ Mz 21	T0 I ISO/ab Mz 100/ab 6/ab Mz 2Mw 100/ab 10/ab 138	T0 I T+5 150/ab 10/ab Mz 2Mw 100/ab 6/ab Mz 2Mw 2Mw 2/ab 240 GeV 1.1/ab 380 GeV	T0 I T+5 I 150/ab 10/ab 5/ab Mz 2Mw 240 GeV 100/ab 6/ab - 24 100/ab 6/ab - 24 Mz 2Mw 240 GeV 24	TO I T+5 I T+10 150/ab 10/ab 5/ab T+10 Mz 2Mw 240 GeV I 100/ab 6/ab I I I00/ab 10/ab I I I00/ab I <	T0 I T+5 I T+10 150/ab 10/ab 5/ab 1 Mz 2Mw 240 GeV 2 100/ab 6/ab 1 2 100/ab 6/ab 1 2 100/ab 6/ab 1 2 2Mw 240 GeV 0 2 100/ab 6/ab 1 2 240 GeV 240 GeV 0.1/ab 1.1/ab 240 GeV MZ	T0 I T+5 I T+10 I $150/ab$ $10/ab$ $5/ab$ 1.7/ab Mz 2Mw $240 \ GeV$ I $2mtop$ $100/ab$ $6/ab$ $10/ab$ $240 \ GeV$ I $2mtop$ $100/ab$ $6/ab$ $10/ab$ $240 \ GeV$ $10/ab$ $0.1/ab$ $100/ab$ $6/ab$ $240 \ GeV$ $10/ab$ $0.1/ab$ $0.1/ab$ Mz $2Mw$ $240 \ GeV$ MZ $0.1/ab$ $0.1/ab$ $240 \ GeV$ Y MZ $2mtop$ MZ $2mtop$ $1.1/ab$ $380 \ GeV$ Y Y Y Y	TO I T+5 I I T+10 I T+1 150/ab 10/ab 5/aE 10/ab 5/aE 1.7/ab 1 Mz 2Mw 240 GeV I I I I 100/ab 6/ab 10/ab 10/ab 10/ab 1.7/ab 1 IO0/ab 6/ab I I I I I 100/ab 6/ab 10/ab 240 GeV 10/ab 1.7/ab 1 100/ab 6/ab 2Mw 240 GeV 10/ab 0.1/ab 0.1/ab 240 GeV 240 GeV MZ 2mtop 1.5 GeV 1.5 GeV	T0 I T+5 I I T+10 I T+15 150/ab 10/ab 5/ab 10/ab 5/ab 1.7/ab mH I00/ab 6/ab 240 eV I I I I 100/ab 6/ab 10/ab 240 eV 10/ab 1.7/ab mH I00/ab 6/ab 240 eV I I I I 100/ab 6/ab 1.0/ab 240 eV 1.0/ab 1.1/ab 1.1/ab 100/ab 6/ab 240 eV 240 eV 0.1/ab 0.1/ab 1.1/ab 240 GeV 240 GeV MZ 2mtop 1.1/ab 1.1/ab 1.1/ab 240 GeV K 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab 1.1/ab	TO I T+5 I T+10 T+15 I 150/ab 10/ab 5/aE 10/ab 5/aE 1.7/ab I Mz 2Mw 24U GEV I I I I 100/ab 6/ab 10/ab 10/ab 1/ab 1/ab Mz 2Mw 24U GEV I 0.1/ab 0.1/ab Mz 2Mw 240 GEV MZ 2mtop 4/a Mz 2Mw 240 GEV MZ 2mtop 4/a MZ 2mtop 1.1/ab-1 4/a MZ 2mtop 4/a	TO I T+5 I	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TO T+5 I T+10 T+15 T+20 T+20 I	TO I T+5 I	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TO T+5 I I T+10 I T+15 I T+20 T+25 I	TO T+5 I T+10 I T+15 I T+20 T+25 T+25 T+30 150/ab 10/ab 5/av 10/ab 5/av 1.7/ab N	TO I T+S I	TO IT+5 I <td>TO I T+5 I</td>	TO I T+5 I

C3 – Cool Copper Collider – New Option

SLAC (1)

Breakthrough in the Performance of RF Accelerators

- RF power coupled to each cell no on-axis coupling
- Full system design requires modern virtual prototyping

Electric field magnitude produced when RF manifold feeds alternating cells equally

Cryogenic operation improves performance

First C³ structure at SLAC

High Gradient Operation at 150 MV/m

The vast majority of ~30,000 currently operating accelerators globally are electron accelerators.

Electron accelerator R&D ranges from industrial applications to the cutting-edge development of ultimate storage rings and linear accelerator based XFELs.

This fortunate situation allows e⁺e⁻ colliders to leverage these global efforts to provide a viable path to a collider reducing the R&D costs to the HEP budget.

 $C^3 - \sqrt{s} = 250 - 550$ GeV - Potential Coordinates

Can fit in FNAL site with BDS improvements

Higgs Couplings from Factories

Higgs Coupling	HL-LHC	ILC250	ILC500	ILC1000	FCC-ee	CEPC240	CEPC360	CLIC380	CLIC3000
(%)		+ HL-LHC	+HL-LHC	+ HL-LHC	+ HL-LHC	+ HL-LHC	+HL-LHC	+ HL-LHC	+HL-LHC
hZZ	1.5	.22	.17	.16	.17	.074	.072	.34	.22
hWW	1.7	.98	.20	.13	.41	.73	.41	.62	1
$hb\overline{b}$	3.7	1.06	.50	.41	.64	.73	.44	.98	.36
$h au^+ au^-$	3.4	1.03	.58	.48	.66	.77	.49	1.26	.74
hgg.	2.5	1.32	.82	.59	.89	.86	.61	1.36	.78
$hc\overline{c}$	-	1.95	1.22	.87	1.3	1.3	1.1	3.95	1.37
$h\gamma\gamma$	1.8	1.36	1.22	1.07	1.3	1.68	1.5	1.37	1.13
$h\gamma Z$	9.8	10.2	10.2	10.2	10	4.28	4.17	10.26	5.67
$h\mu^+\mu^-$	4.3	4.14	3.9	3.53	3.9	3.3	3.2	4.36	3.47
$htar{t}$	3.4	3.12	2.82	1.4	3.1	3.1	3.1	3.14	2.01
Γ_{tot}	5.3	1.8	.63	.45	1.1	1.65	1.1	1.44	.41

Top-Yukawa and Higgs Self-Coupling

Advantages of Energy Reach

Double Higgs production

Electroweak Observables

GigaZ is a big improvement over current status

FCC-ee TeraZ suggests even bigger leap forward in precision

	Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
r	$\Delta lpha(m_Z)^{-1}~(imes 10^3)$	17.8^{*}	17.8^{*}		3.8(1.2)	17.8^{*}	
1	$\Delta m_W ~({ m MeV})$	12^{*}	0.5(2.4)		0.25~(0.3)	0.35~(0.3)	
	$\Delta m_Z ~({ m MeV})$	2.1^{*}	0.7(0.2)	0.2	0.004~(0.1)	0.005~(0.1)	2.1^{*}
	$\Delta m_H ~({ m MeV})$	170^{*}	14		2.5(2)	5.9	78
	$\Delta\Gamma_W ~({ m MeV})$	42^{*}	2		1.2 (0.3)	1.8(0.9)	
	$\Delta\Gamma_Z$ (MeV)	2.3^{*}	1.5(0.2)	0.12	$0.004\ (0.025)$	$0.005\ (0.025)$	2.3^{*}
	$\begin{bmatrix} -\overline{\Delta}A_e & (\times 10^5) \end{bmatrix}$	190^{*}	14(4.5)	1.5(8)	0.7(2)	1.5(2)	$\begin{bmatrix} -64 \end{bmatrix}$
7	$\Delta A_{\mu} (imes 10^5)$	1500^{*}	82(4.5)	3(8)	2.3~(2.2)	3.0(1.8)	400
-	$\Delta A_{\tau} \; (imes 10^5)$	400^{*}	86(4.5)	3(8)	0.5(20)	1.2(20)	570
า	$\Delta A_b \; (imes 10^5)$	2000^{*}	53 (35)	9(50)	2.4(21)	3(21)	380
	$\Delta A_c \ (imes 10^5)$	2700^{*}	140(25)	20(37)	20 (15)	6(30)	200
	$\Delta \sigma_{\rm had}^{\bar{0}}$ (pb)	37*			$\bar{0.035}(\bar{4})$	0.05(2)	$[-\bar{3}\bar{7}^*]$
	$\delta R_e ~(\times 10^3)$	2.4^{*}	0.5(1.0)	0.2 (0.5)	0.004~(0.3)	0.003~(0.2)	2.7
	$\delta R_{\mu}~(imes 10^3)$	1.6^{*}	0.5(1.0)	0.2(0.2)	$0.003\ (0.05)$	0.003(0.1)	2.7
	$\delta R_{ au}~(imes 10^3)$	2.2^{*}	0.6(1.0)	0.2(0.4)	0.003~(0.1)	0.003(0.1)	6
	$\delta R_b \; (imes 10^3)$	3.1^*	0.4(1.0)	$0.04 \ (0.7)$	$0.0014 \ (< 0.3)$	0.005~(0.2)	1.8
	$\delta R_c(imes 10^3)$	17^{*}	0.6(5.0)	0.2(3.0)	$0.015\ (1.5)$	0.02(1)	5.6

Energy Efficient Path to O(10)-TeV Colliders

Muon Collider Advantages

arxiv:1901.06150

Precision [%]

Higgs Precision & Di-Higgs Potential

 $\mu 3$

 $\mu 10$

 $\mu 14$

 $\mu 30$

Muon Collider Prospects: Heavy Scalar Singlet

Higgs Smashers Guide, arXiv: 2103.14043

Figure 14: Exclusions on the mixing angle of a generic scalar singlet, $\sin^2 \gamma = \kappa_V - 1$, as a function of the singlet mass m_{ϕ} for the various collider benchmarks (colored lines). The expected limits at HL-LHC (solid) and a FCC-hh (dashed) are shown as black lines for comparison. The thin dashed lines indicate the two possible scalings of the mixing angle with m_{ϕ} in realistic models with fixed coupling.

Fig. 6: Left panel: 95% reach on the Composite Higgs scenario from high-energy measurements in diboson and di-fermion final states [26]. The green contour display the sensitivity from "Universal" effects related with the composite nature of the Higgs boson and not of the top quark. The red contour includes the effects of top compositeness. Right panel: sensitivity to a minimal Z' [26]. Discovery contours at 5σ are also reported in both panels.

Dark Matter Reach

Higgs Smashers Guide, arXiv: 2103.14043

Discovery potential for 10-TeV scale WIMPs for a variety of color/ew/hypercharge multiplets

SUSY sparticle Searches

Of course, FCC-hh wins in colored particle case over 10 TeV μ Col

Towards Muon Collider

Critical concepts to demonstrate

- Target Solenoid
 - Similar Low Temp Superconductor parameters to ITER Central Solenoid
 - Performance can be improved with a radiation resistant HTS or Cu insert
- Muon 6D Cooling
 - MICE Demonstration of Emittance Cooling
 - High gradient demonstration of RF operating in Tesla-class magnetic fields
 - Cooling channel concepts and detailed simulation consistent with operational targets
- Muon Final Cooling
 - Advances in HTS conductor/cable/magnet technology
 - High Field User Magnet program operationally demonstrating magnet parameters that are rapidly approaching the MC requirements

Towards Muon Collider

Critical concepts to demonstrate

- Muon Acceleration
 - Significant recent advancement in HTS-based fast-ramping magnets
 - Focused effort on studying the integrated magnet/power supply efficiency issues for TeV-scale acceleration
- Collider and Detector
 - · Detailed studies of backgrounds that may impact physics
 - Detector performance studies now demonstrate the ability to successfully measure key processes
 - Concepts in development to manage off-site neutrino radiation issues

See dedicated JINST Volume for key references:

Muon Accelerators for Particle Physics (MUON)

Muon Collider Accelerator Challenges

Beam Production : Demonstration of Ionization Cooling

Nature, Vol 578, P53

MICE

Neutrino Background?

Muon Collider Accelerator Challenges

Neutrino Radiation Mitigation

Mokhov & Van Ginneken

Figure 4: Maximum dose equivalent in TEP embedded in soil in high-energy muon collider orbit plane with 1.2×10^{21} decays per year vs distance from ring center.

Figure 5: Average dose in TEP located in orbit plane vs distance from ring center in soil around a 2+2 TeV muon collider with 1.2×10^{21} decays per year for five values of vertical wave field.

100m deep.

Muon Collider Challenges – **Beam Induced Background**

3IB Parti

10

Figure: by N.Bartosik

Mitigation Strategies needed in spite of the optimized conical absorber

- Highly segmented detectors
- Timing cuts and energy cuts
- Doublet tracker design a la CMS tracker •

Can we reconstruct stuff?

- 10+ TeV is NEW Territory ⇔ Key Areas of Investigation:
- Evaluation of physics potential (including detector technology)
 - Impacts of beam induced background
- **Neutrino Flux Mitigation**
 - Straight accelerator sections produce intense ν beam safety
- High Energy Systems
 - Acceleration sections can impact the energy reach due to cost, power, technical risk, and impact on beam quality
 - 10+ TeV Collider designs must be developed and fully evaluated

Cooling string demonstration to verify high brightness μ beam delivery

Summary – Asia & Europe

Summary + Invitation

Welcome *your* participation in studies – starting with simulations Accelerators, detector technologies, machine-detector interface ... Biggest need is accelerator workforce – ideal place for our young to start

Another Invitation!

Aug 25–29, 2025 Monona Convention Center America/Chicago timezone

nter your search term

Q

https://agenda.hep.wisc.edu/event/2188/

Please ask for US Visa letter ~now if you need one