Searching for Sub-GeV dark matter using the Migdal effect

Gaurav Tomar I IIT Patna Bihar Email: <u>tomar@iitp.ac.in</u>

In collaboration with Alejandro Ibarra, Merlin Reichard, Stefano Scopel, Sunghyun Kang

17th International Conference on Interconnections between Particle Physics and Cosmology

There are evidence for dark matter in a wide range of distance scales

WIMP searches in DD Experiments

APPEC: arXiv: 2104.07634

Motivation

How to explore Sub-GeV DM?

• Nuclear recoil Energy of Sub-GeV dark matter: below the experimental threshold. Most detectors are insufficient.

$$E_R \sim m_{\rm DM}^2 v_{\rm DM}^2 / m_T$$

Challenges

 Nuclear recoil Energy of Sub-GeV dark matter: below the experimental threshold. Most detectors are insufficient.

$$E_R \sim m_{\rm DM}^2 v_{\rm DM}^2 / m_T$$

• Sub-GeV Dark Matter necessitates new detection methods: Electron recoils, phonons, or the Migdal Effect.

Tongyan Lin

Detection via scattering off electron

Detection via scattering off electron

Migdal, J.Phys. USSR 4 (1941) 449

Detection via scattering off electron

Migdal, J.Phys. USSR 4 (1941) 449

Virtual state

Kouvaris and Pradler, arXiv:1607.01789

Virtual state

Kouvaris and Pradler, arXiv:1607.01789

In conventional analysis the *recoiled nucleus* is treated as a *recoiled neutral atom*

Migdal, J.Phys. USSR 4 (1941) 449

The electron catch up process to nucleus leads to ionisations

Electron wave function

The probability of the ionisation is given by

$$P = \left| \left\langle \Psi_F | \Psi_{\text{in}} \right\rangle \right|^2 = \left| \left\langle \Psi_F | e^{-im_e v \cdot \sum_i x_i} | \Psi_{\text{in}} \right\rangle \right|^2$$

collisions

Migdal effect in dark matter direct detection experiments

Masahiro Ibe,^{*a,b*} Wakutaka Nakano,^{*a*} Yutaro Shoji^{*a*} and Kazumine Suzuki^{*a*}

^aICRR, The University of Tokyo, Kashiwa, Chiba 277-8582, Japan ^bKavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan *E-mail:* ibe@icrr.u-tokyo.ac.jp, m156077@icrr.u-tokyo.ac.jp, yshoji@icrr.u-tokyo.ac.jp, ksuzuki@icrr.u-tokyo.ac.jp

The ionisation event rate in an experiment due to the Migdal effect

 $\frac{d^3 R}{dE_R dE_{det} dv_{\chi T}} = \frac{d^2 R_{\chi T}}{dE_R dv_{\chi T}}$

$$\times \frac{1}{2\pi} \sum_{n,l} \frac{d}{dE_e} p_{q_e}^c(nl \to (E_e))$$

differential rate

ionisation probability

Migdal effect in isolated atoms

Migdal effect in semiconductors

Knapen, Kozaczuk, Lin PRL 127 (2021) 8, 081805

- * Crystals share a complicated spectrum of excitations
- * Boosting system in the rest frame of the nucleus does not work
- * Impulse approximation is used to treat the excited state

Migdal effect in semiconductors using phonon

Liang, Mo, Lin et.al. *Phys.Rev.D* 106 (2022) 4, 043004 * Below $m_{\chi} = 50$ MeV the effects of phonon becomes important

* Isotropic material (Silicon, Germanium) is considered

Molecular Migdal effect

Blanco et. Al. *Phys.Rev.D* 106 (2022) 11, 115015 * Center of Mass Recoil (CMR) where molecule is considered as a rigid body

Non Adiabatic Coupling (NAC) non-uniform movement within the molecule. It takes into account rotational and vibrational transitions

Diatomic molecules are considered, N_2 and CO

Modulation is possible due to structure asymmetry of molecule

Migdal effect in SM

MIGDAL Experiment

MIGDAL collab. *Astropart.Phys.* 151 (2023) 102853

7.5 keV Migdal electron

5.0 keV Migdal electron

- * 3D reconstruction of the characteristic event topology to check two tracks sharing a common vertex
- * May 2023 started gathering data@Boulby Underground Laboratory

Migdal effect in direct detection experiments

XENON1T, PRL 123 (2019) 241803

COSINE-100, PRD 105, 042006

DS50, PRL 130 (2023) 10, 10

SuperCDMS, PRD 107 (2023) 11, 2023

Migdal effect in models

Mediator mass \gg exchange momentum

Four-particles contact operators

Hamiltonian density of DM-nucleon interaction

$$H = \sum_{j=1}^{15} (c_j^0 + c_j^1 \tau_3) \mathcal{O}_j \quad \text{with} \quad c_j^0 = c_j^p + c_j^n, \quad c_j^1 = c_j^p - c_j^n$$

For spin-1/2 DM

$$\begin{array}{ll} \mathcal{O}_{1} = 1_{\chi} 1_{N} & \mathcal{O}_{9} = i \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \frac{\vec{q}}{m_{N}}) \\ \mathcal{O}_{3} = i \vec{S}_{N} \cdot (\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}) & \mathcal{O}_{10} = i \vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \\ \mathcal{O}_{4} = \vec{S}_{\chi} \cdot \vec{S}_{N} & \mathcal{O}_{11} = i \vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \\ \mathcal{O}_{5} = i \vec{S}_{\chi} \cdot (\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp}) & \mathcal{O}_{12} = \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{v}^{\perp}) \\ \mathcal{O}_{6} = (\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}) (\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}) & \mathcal{O}_{13} = i (\vec{S}_{\chi} \cdot \vec{v}^{\perp}) (\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}}) \\ \mathcal{O}_{7} = \vec{S}_{N} \cdot \vec{v}^{\perp} & \mathcal{O}_{14} = i (\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}) (\vec{S}_{N} \cdot \vec{v}^{\perp}) \\ \mathcal{O}_{8} = \vec{S}_{\chi} \cdot \vec{v}^{\perp} & \mathcal{O}_{15} = -(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}) ((\vec{S}_{N} \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_{N}}) \end{array}$$

Haxton, Phys. Rev. C89, 065501 (2014), 1308.6288 Gondolo, Kang, Scopel, G.Tomar, Phys.Rev.D 104, 063017

Migdal effect in effective field theory

Migdal effect vs bremsstrahlung

 $\begin{array}{lll} \mathcal{O}_{1} & \mathbb{1}_{\chi}\mathbb{1}_{N} \\ \mathcal{O}_{4} & \vec{S}_{\chi} \cdot \vec{S}_{N} \\ \mathcal{O}_{6} & \left(\frac{\vec{q}}{m_{N}} \cdot \vec{S}_{\chi}\right) \left(\frac{\vec{q}}{m_{N}} \cdot \vec{S}_{N}\right) \\ \mathcal{O}_{10} & \mathbb{1}_{\chi} \left(i\frac{\vec{q}}{m_{N}} \cdot \vec{S}_{N}\right) \end{array}$

Bell, Dent, Newstead, Sabharwal, Weiler PHYSICAL REVIEW D 101, 015012 (2020) Bremsstrahlung

 $\Delta E = E_{nl} + E_e$

• In model with comparable coupling to electrons and protons

Baxter, Kahn, Krnjaic, *arXiv*: 1908.00012

Dark photon model with equal couplings to electrons and protons (heavy mediators)

Baxter, Kahn, Krnjaic, *arXiv*: 1908.00012 Essig, Radler, Sholapurkar, Yu, *arXiv*: 1908.10881

• To handle Particle physics as well as Astrophysical uncertainties in DM direct detection

* WimPyDD: object-oriented Python code

A. Uses most general non-relativistic Effective Field Theory

B. Valid for any velocity distribution

C. Includes DM of arbitrary spin

D. Handles inelastic scattering

Jeong, Kang, Scopel, G.Tomar, Computer Physics Communication, 2022

Migdal effect in relativistic effective models

WimPyDD: an object–oriented Python code for the calculation of WIMP direct detection signals

Jeong, Kang, Scopel, G.Tomar, Computer Physics Communication Ibe, Nakano, Shoji, Suzuki JHEP 03 (2018) 194

Any High Energy Physics model can be studied

WimPyDD arXiv:2106.06207

A. Ibarra, M. Reichard, G.Tomar, arXiv: 2408.15760

- Increased Sensitivity: SuperCDMS and SENSEI will focus on lowering detection thresholds, aiming to detect dark matter masses as low as tens of MeV.
- Technological Advancements: Detector technologies like cryogenic detectors, low-noise amplifiers and noble gases are being optimized for better Migdal effect detection.
- Complementary Approaches: Combining DM-electron, DM-nucleus, and Migdal effect signals will improve constraints on sub-GeV DM.
- Use of multi-target materials across experiments (e.g., semiconductors, noble liquids) creates a more comprehensive exploration range.
- Theoretical Refinements: Improved theoretical calculations on Migdal effect crosssections and dark matter interaction rates can help guide future experiments and enhance their sensitivity

- Absence of DM signal in GeV-TeV range has prompt motivation for Sub-GeV DM
- The analysis of DM-nuclear elastic scattering is limited to DM mass of ~GeV mass range due to experimental threshold limitation
- Ionisation signal from DM-electron scattering (primary signal), and Migdal effect, photon bremsstrahlung (secondary signal) can lift this restriction
- We extended the Migdal analysis to the electromagnetic interactions
- The complementarity among DM-electron, DM-nucleus, and the Migdal effect is is observed
- The Migdal effect is an important tool to look for Sub-GeV dark matter

Migdal Spectrum with EM interactions

A. Ibarra, M. Reichard, G.Tomar, arXiv: 2408.15760 * Precise predictions for atomic ionisation form the Migdal effect

* Dirac-Hartree-Fock method used to calculate the atomic wave function

$$P = \left| \left\langle \Psi_F | \Psi_{\text{in}} \right\rangle \right|^2 = \left| \left\langle \Psi_F | e^{-iq_e \cdot \sum_i x_i} | \Psi_{\text{in}} \right\rangle \right|^2$$

Cox, Dolan, McCabe, Quiney Phys. Rev. D 107, 035032 (2023)

Migdal effect vs electron scattering

Dark photon model with equal couplings to electrons and protons (heavy mediators)

Baxter, Kahn, Krnjaic, *arXiv*: 1908.00012 Essig, Radler, Sholapurkar, Yu, *arXiv*: 1908.10881

Experimental thresholds

Experiment	Thresholds
XENON1T	0.186-3.8 keVee
DS50	0.083-0.106 keVee
SuperCDMS	0.07-2 keVee
COSINE-100	1-1.25 keVee

Reformulation of the Migdal Effect

Migdal's approach

Initial state of the DM scattering : (DM plane wave) x (Nucleus plane wave) Final state of the DM scattering : (DM plane wave) x (Nucleus plane wave) Migdal Effect = Final state effects

The Migdal Effect is treated separately from the nuclear scattering

New approach

Initial state of the DM scattering : (DM plane wave) x (Atomic plane wave)

Final state of the DM scattering : (DM plane wave) x (Atomic plane wave)

Image credit: Masahiro Ibe

• In the dark photon model with arbitrary mediator couplings,

$$\frac{dR_M/dq}{dR_e/dq} \gtrsim \left(\frac{Zc_p + (A - Z)c_n}{c_e}\right)^2 \left(\frac{m_e}{m_N}\right)^2 (qr_a)^2 (qr_a)^2 \int_{\substack{f \in I \\ radius}} \int_{\substack{Fifective atomic \\ radius}} \int_{\substack{Fifective ato$$

Baxter, Kahn, Krnjaic, *arXiv*: 1908.00012

Migdal effect in relativistic effective models

Dimension-5

G.Tomar, Kang, Scopel, arXiv: 2210.00199

EFT validity scale $\tilde{\Lambda} > \frac{\mu_{scale}}{(4\pi)^{1/(d-4)}}$ $\mu_{scale} = m_Z$

Spin-1/2 WIMP response functions

$$\begin{split} R_{M}^{\tau\tau'}\left(\vec{v}_{T}^{\pm2}, \frac{\vec{q}^{2}}{m_{N}^{2}}\right) &= c_{1}^{\tau}c_{1}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{3} \left[\frac{\vec{q}^{2}}{m_{N}^{2}}\vec{v}_{T}^{\pm}c_{5}^{\tau}c_{5}^{\tau'} + \vec{v}_{T}^{\pm2}c_{8}^{\tau}c_{8}^{\tau'} + \frac{\vec{q}^{2}}{m_{N}^{2}}c_{1}^{\tau}c_{1}^{\tau'}\right], \\ R_{\Phi^{\nu}}^{\tau\tau'}\left(\vec{v}_{T}^{\pm2}, \frac{\vec{q}^{2}}{m_{N}^{2}}\right) &= \frac{\vec{q}^{2}}{4m_{N}^{2}}c_{5}^{\tau}c_{5}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{12}\left(c_{12}^{\tau} - \frac{\vec{q}^{2}}{m_{N}^{2}}c_{15}^{\tau}\right)\left(c_{12}^{\tau} - \frac{\vec{q}^{2}}{m_{N}^{2}}c_{15}^{\tau'}\right). \\ \text{Interference terms} \\ R_{\Phi^{\nu'}}^{\tau\tau'}\left(\vec{v}_{T}^{\pm2}, \frac{\vec{q}^{2}}{m_{N}^{2}}\right) &= c_{3}^{\tau}c_{1}^{\tau} + \frac{j_{\chi}(j_{\chi}+1)}{3}\left(c_{12}^{\tau} - \frac{\vec{q}^{2}}{m_{N}^{2}}c_{15}^{\tau}\right)c_{11}^{\tau'}, \\ R_{\Phi^{\nu'}}^{\tau\tau'}\left(\vec{v}_{T}^{\pm2}, \frac{\vec{q}^{2}}{m_{N}^{2}}\right) &= \frac{j_{\chi}(j_{\chi}+1)}{12}\left[c_{12}^{\tau}c_{12}^{\tau'} + \frac{\vec{q}^{2}}{m_{N}^{2}}c_{13}^{\tau}c_{13}^{\tau'}\right], \\ R_{\Sigma^{\nu'}}^{\tau\tau'}\left(\vec{v}_{T}^{\pm2}, \frac{\vec{q}^{2}}{m_{N}^{2}}\right) &= \frac{\vec{q}^{2}}{4m_{N}^{2}}c_{10}^{\tau}c_{10}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{12}\left[c_{4}^{\tau}c_{4}^{\tau'}\frac{\vec{q}^{2}}{m_{N}^{2}}(c_{4}^{\tau}c_{6}^{\tau'} + c_{6}^{\tau}c_{4}^{\tau'}) + \frac{\vec{q}^{4}}{m_{N}^{4}}c_{5}^{\tau}c_{6}^{\tau'} + \vec{v}_{T}^{\pm2}c_{12}^{\tau}c_{13}^{\tau}c_{13}^{\tau'}\right], \\ R_{\Sigma^{\nu'}}^{\tau\tau'}\left(\vec{v}_{T}^{\pm2}, \frac{\vec{q}^{2}}{m_{N}^{2}}\right) &= \frac{\vec{q}}{4m_{N}^{2}}c_{10}^{\tau}c_{10}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{12}\left[c_{4}^{\tau}c_{4}^{\tau'}\frac{\vec{q}^{2}}{m_{N}^{2}}(c_{4}^{\tau}c_{6}^{\tau'} + c_{6}^{\tau}c_{4}^{\tau'}) + \frac{\vec{q}^{4}}{m_{N}^{4}}c_{5}^{\tau}c_{6}^{\tau'} + \vec{v}_{T}^{\pm2}c_{12}^{\tau}c_{12}^{\tau}c_{13}^{\tau'}c_{13}^{\tau'}\right], \quad (38) \\ R_{\Sigma^{\nu'}}^{\tau\tau'}\left(\vec{v}_{T}^{\pm2}, \frac{\vec{q}^{2}}{m_{N}^{2}}\right) &= \frac{1}{8}\left[\frac{\vec{q}^{2}}{m_{N}^{2}}\vec{v}_{1}^{\pm}c_{5}^{\tau}c_{5}^{\tau'} + \vec{v}_{1}^{\pm2}c_{7}^{\tau}c_{7}^{\tau'}\right] + \frac{j_{\chi}(j_{\chi}+1)}{12}\left[c_{4}^{\tau}c_{4}^{\tau'} + \frac{\vec{q}^{2}}{m_{N}^{2}}c_{5}^{\tau}c_{5}^{\tau} + \frac{\vec{q}^{2}}{m_{N}^{2}}c_{15}^{\tau'}c_{5}^{\tau'}\right] + \frac{\vec{q}^{2}}{2m_{N}^{2}}c_{5}^{\tau}c_{5}^{\tau'} + c_{12}^{\pi}c_{13}^{\tau'}c_{13}^{\tau'}\right], \\ \\ R_{\Sigma^{\nu'}}^{\tau\tau'}\left(\vec{v}_{T}^{\pm2}, \frac{\vec{q}^{2}}{m_{N}^{2}}\right) &= \frac{1}{8}\left[\frac{\vec{q}^{2}}{m_{N}^{2}}\vec{v}_{5}^{\tau}c_{5}^{\tau'} + c_{8}^{\tau}c_{8}^{\tau'}\right], \\ \\ R_{\Delta^{\nu'}}^{\tau'}\left(\vec{v}_{T}^{\pm2}, \frac{\vec{q}^{2}}{m_{N}^{2}}\right) &= \frac$$

Anand, Fitzpatrick, Haxton, Phys. Rev. C89, 065501 (2014), 1308.6288

NREFT

• Free nucleon operators

$$\bar{\psi}_{f} \Gamma \psi_{i} \longrightarrow \chi_{f}^{\dagger} \mathcal{O}_{X} \tau_{N}^{t} \chi_{i}$$

$$\widehat{O}_M = 1, \quad \widehat{\vec{O}}_{\Sigma} = \vec{\sigma}_N, \quad \widehat{\vec{O}}_{\Delta} = \widehat{\vec{v}}_N^+, \quad \widehat{\vec{O}}_{\Phi} = \widehat{\vec{v}}_N^+ \times \vec{\sigma}_N, \quad \widehat{O}_{\Omega} = \widehat{\vec{v}}_N^+ \cdot \vec{\sigma}_N.$$

• WIMP-nucleon operators

$$\widehat{\mathcal{O}}_M = 1, \quad \widehat{\vec{\mathcal{O}}}_{\Sigma} = \vec{\sigma}_N, \quad \widehat{\vec{\mathcal{O}}}_{\Delta} = \vec{v}_{\chi N}^+, \quad \widehat{\vec{\mathcal{O}}}_{\Phi} = \vec{v}_{\chi N}^+ \times \vec{\sigma}_N, \quad \widehat{\mathcal{O}}_{\Omega} = \vec{v}_{\chi N}^+ \cdot \vec{\sigma}_N$$

$$\vec{v}_{\chi N}^{\,+}=\vec{v}_{\chi}^{\,+}-\vec{v}_{N}^{\,+}$$

$$ec{v}_{\chi}^{\,+} = ec{v}_{\chi} - rac{ec{q}}{2m_{\chi}}$$

NREFT

• Nuclear response

- *M* : vector-charge (**spin-independent part**, non-zero for all nuclei)
- $\bigcirc \Phi''$: vector-longitudinal, related to spin-orbit coupling $\sigma \cdot I$ (also spin-independent, non-zero for all nuclei)
- $\sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j$
- $\bigcirc \Delta$: associated to orbital angular momentum operator I, requires j > 0
- $\bigcirc \tilde{\Phi}'$: related to the vector-longitudinal operator, transforms as a tensor under rotation, require j>1/2

 DM velocity is a linear combination of the substructures and halovelocities

$$f(v) = (1 - \eta_{sub})f_{halo}(v) + \eta_{sub}f_{sub}(v)$$

 η_{sub} : DM fraction in the substructure

Migdal effect in effective field theory

• Differential rate

$$\frac{dR_{\chi T}}{dE_R} = \sum_T N_T \frac{\rho_{\chi}}{m_{\chi}} \int_{v_{min}} d^3 v_{\chi T} f(v_{\chi T}) v_{\chi T} \frac{d\sigma_T}{dE_R}$$

Differential cross-section

$$\frac{d\sigma}{dE_R} = \frac{2m_T}{4\pi v_T^2} \left[\frac{1}{2j_{\chi} + 1} \frac{1}{2j_T + 1} |\mathcal{M}_T|^2 \right]$$

Scattering amplitude

$$\frac{1}{2j_{\chi}+1} \frac{1}{2j_{T}+1} |\mathcal{M}_{T}|^{2} = \frac{4\pi}{2j_{T}+1} \sum_{\tau,\tau'} \sum_{k} R_{k}^{\tau,\tau'} \left[c_{j}^{\tau}, (v_{T}^{\perp})^{2}, \frac{q^{2}}{m_{N}^{2}} \right] W_{Tk}^{\tau\tau'}(y)$$
Here, $k = M, \Phi'', \tilde{\Phi}', \Sigma', \Sigma'', \Delta, \Phi''M, \Delta\Sigma'$
 $y = (qb/2)^{2}$ with nuclear size b
Anand, Fitzpatrick, Haxton, Phys. Rev. C89, 065501 (2014), 1308.6288

The ionisation event rate in an experiment due to the Migdal effect

$$\frac{dR}{dE_{det}} = \int_{0}^{\infty} dE_{R} \int_{v_{min}}^{\infty} dv_{\chi T} \frac{d^{3}R}{dE_{R}dE_{det}dv_{\chi T}}$$
Minimum DM speed to register the recoil
$$v_{min}(E_{R}) = \frac{m_{T}E_{R} + \mu_{\chi T}\Delta E}{\mu_{\chi T}\sqrt{2m_{T}E_{R}}}$$
Migdal ($\Delta E = E_{e} + E_{nl}$)
Bremsstrahlung ($\Delta E = \omega$)

Identical to inelastic DM with $\delta \rightarrow \Delta E$

Smith and Weiner, *arXiv*: 0101138

Direct Detection

Direct Detection

Direct Detection (Elastic Scattering)

Direct Detection (Inelastic Scattering)

Direct Detection (Inelastic Scattering)

Direct Detection (Inelastic Scattering)

Real state