Cogenesis by majoron

Based on the work with Tae Hyun Jung, 2311.09005; Suruj Jyoti Das, Minxi He, Tae Hyun Jung, Jin Sun, 2406.04180

Eung Jin Chun K S S KOREA INSTITUTE FOR

భారతీయ సాంకేతిక విజ్నాన సంస్థ హైదరాబాద్ भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

17TH INTERNATIONAL CONFERENCE ON INTERCONNECTIONS BETWEEN PARTICLE PHYSICS AND

COSMOLOGY

PPC 2024

14 -18 October 2024, Hyderabad, India

Baryogenesis and DM from a pNGB

Majoron $\theta \equiv \frac{a}{f_a}$ in Seesaw Model with $U(\mathcal{V}_{B-L})$

Connection to neutrino mass

$$\mathcal{L}_N = y_v lHN + \frac{1}{2} \Phi NN + \frac{\Phi^n}{\Lambda^{n-4}} + \text{h.c.} \leftarrow \Phi = \frac{f_a}{\sqrt{2}} e^{i\theta}$$

$$V_n = \frac{1}{n^2} m_a^2 f_a^2 (1 - \cos(n\theta))$$

 $\mathcal{L}_{\theta} = \sum x_{\psi} \partial_{\mu} \theta \ \overline{\psi} \gamma^{\mu} \psi$

DM from a classical oscillation of θ , $\dot{\theta}$

$$\frac{p_{\rm DM}}{s} = m_a \frac{n_a}{s} = m_a Y_{\theta} \approx 0.44 {\rm eV}$$

Spontaneous Baryogenesis in the background of $\dot{\theta} \neq 0$

Cohen-Kaplan, '87, '88

$$Y_B = Y_{\dot{\theta}} \left(\frac{T_B}{f_a}\right)^2 \approx 10^{-10}$$

Nb) Cogenesis from QCD axion? $m_a \sim \frac{m_\pi f_\pi}{f_a}$

pNGB as a CDM candidate

Coherent oscillation from misalignment

• When a boson field have an initial amplitude displaced from the vacuum value $\theta_i \equiv \frac{a_i}{f_a} \neq 0$, it starts to oscillate at $H(T_{osc}) \approx m_a$ and becomes coherent (wave) dark matter:

$$\frac{\rho_{\rm DM}}{s} \approx \frac{m_a^2 f_a^2 \theta_i^2}{s(T_{\rm osc})} \approx 0.44 \text{ eV}$$
$$\Rightarrow f_a \sim 5 \ 10^{11} \text{GeV} \left(\frac{\text{eV}}{m_a}\right)^{\frac{1}{4}}$$

Preskill, Wise, Wilczek; Abbott, Sikivie; Dine, Fischler, 1983

 $\rho_{\theta} = f_a^2 \left(\frac{1}{2} \dot{\theta}^2 + m_a^2 (1 - \cos\theta) \right)$

Coherent oscillation from kinetic motion

- With a kinetic motion $\dot{\theta}_i \neq 0$, it gets first trapped by the potential when KE=PE: $f_a^2 \dot{\theta}^2 \approx m_a^2 f_a^2 \theta^2 \Rightarrow \dot{\theta}_{trp} \approx m_a \theta_{trp}$ (note) $Y_{\theta} \equiv \frac{n_{\theta}}{s} = \frac{\dot{\theta} f_a^2}{s} = \text{conserved}$
- Then, oscillation starts after a while if $H(T_{trp}) > m_a$ (*i*); or immediately if $m_a > H(T_{trp})$ (*ii*):

$$\underline{A} \approx \begin{cases} \frac{m_a^2 f_a^2 \theta_{\rm trp}^2}{s(T_{\rm osc})}, & (i) \\ \frac{\dot{\theta}_{\rm trp}^2 f_a^2}{s(T_{\rm trp})} \approx m_a Y_{\theta}, & (ii) \end{cases}$$

Co, Hall, Harigaya, 1910.14152

pNGB for Baryogenesis

Spontaenous Baryogenesis

Cohen-Kaplan, 1987, 88

- Consider $U(1)_B$ spontaneously broken at the scale f_a .
- The pNGB coupling to the baryon current $\frac{1}{f_a}\partial_{\mu}a \sum_{\psi} x_{\psi}\bar{\psi}\gamma^{\mu}\psi$ shifts the energy of $\psi/\bar{\psi}$ by $E_{\psi/\bar{\psi}} = E_0 \mp x_{\psi}\dot{\theta}$ in the background of $\dot{\theta} \equiv \dot{a}/f_a$.
- When **B violation is in thermal equilibrium**, the chemical potential of $\psi/\bar{\psi}$ is generated $\mu_{\psi} = c_{\psi}\dot{\theta}$ depending on the equilibration processes.
- This leads to the baryon asymmetry $Y_B \equiv \frac{\mu_B T^2}{s}$ with $\mu_B \propto \dot{\theta}$ which freezes at $T = T_B$ when B violation decouples.

 Application to a chiral U(1)_{PQ} symmetry.
 Anomaly interaction aGG̃/aWW̃ in equilibrium: Strong sphaleron → 2μ_a + μ_{u^c} + μ_{d^c} = c_S θ

EW sphaleron $\rightarrow 3\mu_{q_I} + \mu_{l_I} = c_W \dot{\theta}$

• B (B-L) asymmetry is frozen at $T_B = T_{EW}$

Co-Harygaya, 1910.02080; Domcke et.al., 2006.04138; and many others

Nb) Cogenesis from QCD axion? $m_a \sim \frac{m_{\pi} f_{\pi}}{f_a}$

$$Y_B \sim 0.1 Y_\theta \left(\frac{T_{EW}}{f_a}\right)^2 \sim 10^{-10} \Rightarrow m_a \sim 10^{-9} \text{ eV} \left(\frac{10^{11} \text{GeV}}{f_a}\right)^2$$
$$\frac{\rho_{\text{DM}}}{s} \sim m_a Y_\theta \sim 0.44 \text{eV}$$

Seesaw & B-L (L) violation

- Seesaw mechanism explaining tiny Majorana neutrinos mass: $\mathcal{L} = y_{\nu}lNH + \frac{1}{2}MNN + h.c. \Rightarrow \mathcal{L}_{W} = \frac{m_{\nu}}{\nu_{H}^{2}}lHlH + h.c. \quad m_{\nu} = y_{\nu}^{2}\frac{\nu_{H}^{2}}{M_{N}}$
- B-L violation by Weinberg operator $ll \leftrightarrow HH$ in equilibrium for $M_N \gtrsim T \gtrsim 10^{13}$ GeV. Co, et.al., 2006.05687

• B-L violation by decay & inverse-decay $N \leftrightarrow lH$ in equilibrium for $\frac{M_N}{z_{in}} \gtrsim T \gtrsim \frac{M_N}{z_{out}}$. EJC, Jung, 2311.09005;

EJC, Jung, 2311.09005; EJC, Das, He, Jung, Sun, 2406.04180 Barns, et.al., 2402.10263

Majorogenesis

$$\mathcal{L} = y_{\nu} lHN + \frac{1}{2} y_N \Phi NN + h.c.$$
 with $\Phi = \frac{f_a}{\sqrt{2}} e^{i\theta}$

◆Anomaly-free B-L symmetry broken by M_N = ^{y_N}/_{√2} f_a
◆The pNGB (Majoron) coupling to the B-L current: $\dot{\theta} \sum_{\psi} x_{\psi} \bar{\psi} \gamma^0 \psi$ where $(x_{\psi}) = (\frac{1}{3}, -\frac{1}{3}, -1, 1, 1)$ for $\psi = (q, q^c, l, e^c, N)$.
◆N decay/inverse-decay in equilibrium $\rightarrow \mu_{B-L} \propto \dot{\theta}$.

◆B (B-L) asymmetry freezes at
$$T_B \approx \frac{M_N}{z_{out}} \rightarrow Y_B = \frac{c_B \dot{\theta}(T_B) T_B^2}{s(T_B)}$$

Efficient inverse-decay

• Define $K \equiv \left(\frac{\Gamma_N}{H}\right)_{T=M_N} \approx \frac{\widetilde{m}_{\nu}}{\text{meV}}$ $K \sim 1: lH \leftrightarrow N$ barely in equilibrium at $T \sim M_N$ $K \gg 1: N \leftrightarrow lH$ in equilibrium during $T = \left(\frac{M_N}{z_{\text{in}}}, \frac{M_N}{z_{\text{out}}}\right).$ • Consider $\widetilde{m}_{\nu} = 0.05 \text{eV} (K = 50)$

(Note) In the standard thermal leptogenesis, the inverse-decay washes out the lepton asymmetry roughly by $\frac{1}{K \ln K} \sim 10^{-2}$ (strong washout).

Medium potential $\dot{\theta}$

DIRAC FERMION

 $p_{\pm}^{\mu} \gamma_{\mu} \psi_{L} = m \psi_{R}$ $p_{\pm}^{\mu} \gamma_{\mu} \psi_{R} = m \psi_{L}$ $p_{\pm}^{\mu} = (E \pm x_{\psi} \dot{\theta}, \vec{p})$ $p_{\pm}^{\mu} = (E \pm x_{\psi} \dot{\theta}, \vec{p})$ $p_{\pm}^{\mu} = E_{0} - x_{\psi} \dot{\theta}$ $n_{\psi} - n_{\overline{\psi}} \propto \mu_{\psi} - x_{\psi} \dot{\theta}$ Ex) Electron Yukawa $Y_{e} le^{c} \widetilde{H} \text{ in equilibrium}$

 $\Rightarrow \mu_l + \mu_{e^c} - \mu_H = 0$

MAJORANA FERMION

$$p_{+}^{\mu}\gamma_{\mu}\psi_{L} = M\psi_{R}$$

$$p_{-}^{\mu}\gamma_{\mu}\psi_{R} = M\psi_{L} \qquad \mathcal{H} = \hat{p}\cdot\vec{\sigma} = \pm 1$$

$$E = \sqrt{M^{2} + (p + \mathcal{H}x_{\psi}\dot{\theta})^{2}} \approx E_{0} + \mathcal{H}x_{\psi}\dot{\theta}\frac{p}{E_{0}}$$

$$n_{N_{+}} - n_{N_{-}} \propto \mu_{N} - x_{N}\dot{\theta}(1+z)e^{-z} \quad z \equiv \frac{M}{T}$$

Neutrino Yukawa $Y_{\nu}lNH$ in equilibrium

◆ Opposite helicity states N_± have the same rates and thus µ_N decouples: $\langle N_+ \leftrightarrow lH \rangle = \langle N_- \leftrightarrow lH \rangle$; $\langle N_+ \leftrightarrow \overline{lH} \rangle = \langle N_- \leftrightarrow \overline{lH} \rangle \implies \mu_l + \mu_H + \dot{\theta} = 0$

Chemical equilibration

• Four Yukawas + EW Sphaleron + charge neutrality (simple case):

$$y_{u}qu^{c}H \Rightarrow \mu_{q} + \mu_{u^{c}} + \mu_{H} = 0$$

$$y_{d}qd^{c}\widetilde{H} \Rightarrow \mu_{q} + \mu_{d^{c}} - \mu_{H} = 0$$

$$y_{e}le^{c}\widetilde{H} \Rightarrow \mu_{l} + \mu_{e^{c}} - \mu_{H} = 0$$

$$\mu_{L} = 1 \ 3 \ (2\mu_{l} - \mu_{e^{c}}) = -\frac{51}{11}\dot{\theta}$$

$$\mu_{L} = 1 \ 3 \ (2\mu_{l} - \mu_{e^{c}}) = -\frac{51}{11}\dot{\theta}$$

$$\mu_{B-L} = \mu_{B} - \mu_{L} = \frac{79}{11}\dot{\theta}$$

$$\mathcal{A}_{B+L}(W\widetilde{W}) \Rightarrow \ 3(3\mu_{q} + \mu_{l}) = 0$$

$$Y = 0 \Rightarrow 3\left(\frac{1}{6}2 \ 3\mu_{q} - \frac{2}{3}3\mu_{u^{c}} + \frac{1}{3}3\mu_{d^{c}} - \frac{1}{2}2\mu_{l} + \mu_{e^{c}}\right) - \frac{1}{2}22 \ \mu_{H} = 0$$

Cogenesis by initial kinetic motion

* Simultaneous generation of $Y_B \& \rho_{DM}$:
$m_a Y_{\theta} = 0.44 \text{eV} \Rightarrow Y_B \approx 0.1 Y_{\theta} \left(\frac{T_B}{f_a}\right)^2 \approx 0.1 \frac{0.44 \text{eV}}{m_a} \left(\frac{T_B}{f_a}\right)^2$
* $T_B = \frac{M_N}{z_{out}}$ when $\frac{M_N}{z_{out}} > T_{EW}$:
Trapping condition $m_a \sim 4 \cdot 10^6 \ eV \ y_N^2$
$\dot{\theta}_{\rm trp} \sim m_a > H_{\rm trp} \qquad f_a \lesssim 10^8 y_N^{-1} {\rm GeV} \left(\frac{{\rm eV}}{m_a}\right)^{1/4}$
* $T_B = T_{EW}$ when $M_N < T_{EW}$:
$f_a \sim 2 \cdot 10^6 \text{GeV} \left(\frac{\text{eV}}{m_a}\right)^{1/2}$

Cogenesis by conventional misalignment

- Starting from $\dot{\theta} = 0$, $\dot{\theta} \sim m_a$ arises at $T_{\rm osc} \sim \sqrt{m_a M_P}$ around which Y_B is supposed to be generated.
- Considering $T_{\rm osc} = T_B$, one finds $m_a \sim 10^3 \text{GeV}$ and $T_B \sim \frac{M_N}{10} \sim 10^{10}$ GeV, and thus $\frac{\rho_a}{s} \sim \frac{m_a^2 f_a^2}{s(T_{\rm osc})} \gg 0.44 \text{ eV}.$
- Way out: Early oscillation with $m_a(T) \gg m_a^0$ to separate out $T_B \gg T_{\rm osc}$.

Symmetry non-restoration

• Consider a U(1) breaking field Φ coupling to the Higgs or any bosons S in thermal equilibrium:

$$V(\Phi, S) = \lambda_{\phi} |\Phi|^4 + \lambda_s |S|^4 - 2\lambda_{\text{mix}} |\Phi|^2 |S|^2 - \mu_{\phi}^2 |\Phi|^2 \pm \mu_s^2 |S|^2$$
$$\Phi = \frac{\phi}{\sqrt{2}} e^{ia/\langle\phi\rangle}$$

• Temperature dependent VEV and mass:

$$V_{T}(\phi) = \frac{\lambda_{\phi}}{4} \phi^{4} - \left(\mu_{\phi}^{2} + \lambda_{\min}T^{2}\right)\phi^{2} + \cdots$$
$$V_{a} = \frac{\Phi^{n}}{\Lambda^{n-4}} + h.c. = \frac{1}{n^{2}}m_{a}^{2}(T)f_{a}^{2}(T)\left(1 - \cos\left(n\frac{a}{f_{a}(T)}\right)\right)$$

$$\langle \phi \rangle_T = f_a(T) = \sqrt{f_{a0}^2 + c_\lambda T^2} \equiv f_{a0} \sqrt{1 + \frac{T^2}{T_c^2}}$$
$$m_a^2(T) = m_{a0}^2 \left(\frac{f_a(T)}{f_{a0}}\right)^{n-2}$$

 $c_{\lambda} \approx \frac{\lambda_{\rm mix}}{6\lambda_{\phi}} <$

Dynamics of sliding pNGB

$$\ddot{\theta} + \left(3H + 2\frac{\dot{f}_a(T)}{f_a(T)}\right)\dot{\theta} + \frac{1}{n}m_a^2(T)\sin(n\theta) = 0$$
$$\frac{\dot{f}_a(T)}{f_a(T)} = -H\frac{T^2}{T_c^2}\left(1 + \frac{T^2}{T_c^2}\right)^{-1} \approx -H \text{ for } T \gg T_c$$
$$m_a^2(T) = m_{a0}^2\left(1 + \frac{T^2}{T_c^2}\right)^{\frac{n-2}{2}}$$

$$\ddot{ heta} + H\dot{ heta} + rac{1}{n}m_a^2(T)\sin(n heta) = 0$$

$$\ddot{\theta} + H\dot{\theta} = T\frac{d}{dt}\frac{\dot{\theta}}{T} \approx 0$$
$$\Rightarrow \dot{\theta} \approx T$$

First oscillates at high T

• Starting from the initial $\theta_i \neq 0$, the early oscillation starts to produce $\dot{\theta} \neq 0$ around T_0 when $H(T_0) \approx m_a(T_0)$

$$T_0 \approx 5 \cdot 10^{11} \text{GeV} \left(\frac{100}{g_*}\right) \left(\frac{c_\lambda}{10^8}\right)^{\frac{3}{2}} \left(\frac{m_{a0}}{\text{eV}}\right)^2 \left(\frac{10^6 \text{GeV}}{f_{a0}}\right)^{\frac{3}{2}}$$

 It escapes from oscillation at T_{slide} when the kinetic energy becom es larger than the potential energy.

$$\dot{\theta}(T_{\text{slide}}) \approx \frac{2}{5} m_a(T_{\text{slide}}) \Rightarrow T_{\text{slide}} \approx \frac{C}{16} (5\theta_i)^4 T_0$$

Slides and oscillate again

• It slides down as $\dot{\theta} \propto T$ from T_{slide} to T_c below which temperature dependence disappears and thus falls down as $\dot{\theta} \propto T^3$.

$$T_c \approx \sqrt{\frac{f_{a0}}{c_{\lambda}}} = 10^2 \text{GeV} \left(\frac{f_{a0}}{10^6 \text{GeV}}\right)^{\frac{1}{2}} \left(\frac{10^8}{c_{\lambda}}\right)^{\frac{1}{2}} \qquad T_c < T_B < T_{\text{slide}}$$

Era of Baryogenesis

• As the kinetic energy reduces as T^6 , it soon gets trapped in the potential and the second oscillation starts to produce dark matter density: $T_{osc} = T_{trp}$.

$$T_{\rm osc} \approx \frac{4 \,{\rm GeV}}{C^{\frac{1}{5}} (5\theta_0)^{\frac{2}{3}}} \left(\frac{g_*}{100}\right)^{\frac{1}{6}} \left(\frac{10^8}{c_\lambda}\right)^{\frac{5}{6}} \left(\frac{{\rm eV}}{m_{a0}}\right)^{\frac{1}{3}} \left(\frac{f_{a0}}{10^6 \,{\rm GeV}}\right)^{\frac{5}{3}}$$
 Era of I

Cogenesis corner

$$\begin{pmatrix} \dot{\theta} \\ \overline{T} \end{pmatrix}_{\text{slide}} \approx 10^{-7} C^{\frac{1}{2}} (5\theta_i)^2 \left(\frac{100}{g_*}\right) \left(\frac{c_\lambda}{10^8}\right)^{\frac{3}{2}} \left(\frac{m_{a0}}{\text{eV}}\right)^2 \left(\frac{10^6 \text{GeV}}{f_{a0}}\right)^3$$

$$Y_B = \frac{45}{2\pi^2} \frac{c_B}{g_*} \left(\frac{\dot{\theta}}{T}\right)_{\text{slide}} \begin{cases} 1 & \text{for } T_c < T_{EW} \text{ or } \frac{M_N}{z_{\text{out}}} \\ \left(\frac{T_{EW}}{T_c}\right)^2 \text{ for } \frac{M_N}{z_{\text{out}}} < T_{EW} < T_c \\ \left(\frac{M_N}{z_{\text{out}}T_c}\right)^2 \text{ for } T_{EW} < \frac{M_N}{z_{\text{out}}} < T_c \end{cases}$$

$$\frac{\rho_{\text{DM}}}{s} \approx 0.07 \text{eV} C^{\frac{1}{2}} (5\theta_i)^2 \left(\frac{100}{g_*}\right)^{\frac{3}{2}} \left(\frac{c_\lambda}{10^8}\right)^{\frac{5}{2}} \left(\frac{m_{a0}}{\text{eV}}\right)^3 \left(\frac{10^6 \text{GeV}}{f_{a0}}\right)^3$$

Discussion

- Type-I seesaw model with majoron provides an affordable framework for the simultaneous generation of baryon asymmetry and dark matter enjoying freedom with the parameters (m_a, f_a, M_N) .
- Needs a general study including the weak washout regime ($K \sim 1$) and higher dimensional operators (n > 5).
- Extendable to various seesaw models.