PBH formation from an aborted phase transition

Tae Hyun Jung

IBS CTPU PTC

Wen-Yuan Ai (KCL), Lucien Heurtier (KCL), THJ, 2409.02175

Contents

1. Aborted phase transition

- Setup (phase transitions during reheating)
- Aborted PT

2. Primordial black hole formation

- Fate of bubbles in aborted PT
- Post-accretion collapse
- Estimation of PBH abundance

3. Summary

Reheating after inflation

• After inflation (when the inflaton exits the slow-roll phase), it starts coherent oscillation. The decay of the oscillation heats up the radiation plasma.

Phase transitions during temperature increase

Fate of bubbles nucleated in aborted PT

• Vacuum energy is not redshifted while the surrounding thermal plasma gets redshifted.

 \Rightarrow A positive density perturbation is generated in the macroscopic region affected by the bubble dynamics.

PBH formation via post-accretion collapse

Since we are in the matter (reheaton) domination, the positive density perturbation accretes surrounding matter and collapses into a black hole: **"post-accretion collapse"**

NR simulation confirmed it.

SA: de Jong, Aurrekoetxea, Lim, 2306.11810 Luca et al, 2112.02534

PBH mass

• The PBH keeps accreting surrounding matter and its mass grows quickly up to around the maximally allowed mass, which is the mass inside one Hubble patch.

• M_{PBH} adiabatically follows one Hubble mass until the radiation domination starts. \Rightarrow The final PBH mass is determined by around one Hubble mass at T_{RH}

$$\Rightarrow M_{PBH} \sim 3.5 \times 10^{-12} M_{\odot} \alpha \left(\frac{10^5 \text{GeV}}{T_{RH}}\right)^2 \left(\frac{100}{g_*(T_{RH})}\right)^{1/2}$$

O(0.1 - 1) efficiency param (we don't know the exact evolution)

PBH abundance

 $\mathbf{d}N_{\rm PBH} = \mathbf{d}N_{\rm bubble} = \mathrm{d}t \ V \ \Gamma$

(All bubbles become PBHs during the aborted PT)

• Bubble nucleation rate $\Gamma(T)$ is maximal at $T_{\text{max}} \Rightarrow$ Largest contribution comes from T_{max}

(PBH relic density normalized by the observed DM relic)

Result

Summary

- During reheating after inflation, a heating PT can be aborted if $T_c < T_{max} < T_n$.
- In the aborted PT, symmetry-restoring bubbles can still be nucleated although they never collide.
- These bubbles shrink and disappear while positive density perturbations are generated on a macroscopic scale.
- They lead to PBH formation via post-accretion collapse mechanism, so the PBH mass is determined by the reheating temperature.

 $M_{\rm PBH} \, [{\rm M}_{\odot}]$