

KATRIN's Latest Neutrino Mass Results & eV-Scale Sterile Neutrino Sensitivity

PPC, 2024 | Oct 14, 2024

Shailaja Mohanty (shailaja.mohanty@kit.edu) for the KATRIN collaboration Institute for Astroparticle Physics |

www.kit.edu

Significance of ν Mass

"We have learned that neutrinos are not massless, and that they change flavor as they propagate through space"

— Takaaki Kajita & Arthur McDonald 2015 Nobel Prize in Physics

In Particle Physics:

- Nature of v: Dirac or Majorana?
- ν masses are at least 500,000 times lighter than electrons, less than 0.8 eV. Why so small? Sea-saw mechanism: Type-I & Type-II, etc
- Possible connection to generation of matter-antimatter asymmetry Leptogenesis

Source: PBS NOVA/Fermilab/Office of Science/US Dept of Energy

Significance of ν Mass

- "The mass of the neutrino, though incredibly small, holds profound implications for the evolution of the universe."
- Steven Weinberg, Nobel Laureate in Physics, 1979

In Cosmology:

- Significant abundance of mass carrying vs can influence structure formation and the expansion of universe
- With finite masses, cosmological neutrinos become part of the total matter field and contribute to its smoothing

Chung-Pei Ma 1996

Status of Neutrino Puzzle

- Absolute mass scale: minimum m_ν
- What is the neutrino mass ordering, normal or inverted?
- Are neutrinos Majorana type particles, and if so, what new physics lies behind this fact?
- Is there leptonic CP violation?
- Are there more than 3 known flavors i.e. Sterile neutrinos?
- Can neutrinos explain the matter-antimatter asymmetry in the Universe?

Measurement of ν mass(es): complementary approaches

Cosmology

 $0\nu\beta\beta$ -decay

 β -decay kinematics

Direct kinematic ν mass measurement

- ✓ Model independent:
 - Independent of cosmological model and neutrino nature
 - ✓ Measurement of electron β spectrum:

 $\frac{d\Gamma}{dE} = C p (E + m_e) (E_0 - E) \sqrt{(E_0 - E)^2 - m_\nu^2} F(Z + 1, E) \Theta(E_0 - E - m_\nu) S(E)$

- ✓ Based on kinematics & energy conservation
- ✓ Incoherent sum of neutrino mass: $m_{\nu}^2 = \sum_{i=1}^3 |U_{ei}|^2 m_i^2$
- ✓ Suitable isotopes:
 - Tritium
 - E₀ = 18.6 keV, T_{1/2} = 12.3 y
 - S(E) = 1 (super-allowed)
 - Alternative approach: Holmium (EC decay)
 - $Q_{\rm EC} \approx 2.5 \, {\rm keV}, \ T_{1/2} = 4570 \, {\rm y}$

Source: https://web.physics.utah.edu/~jui/5110/ y2009m03d09/KATRIN.htm

Shailaja Mohanty: KATRIN's Latest Neutrino Mass Results & eV-Scale Sterile Neutrino Sensitivity

Karlsruher Institut für Technologie

The KATRIN Experiment

- Windowless Gaseous Molecular Tritium Source:
 - High activity: \sim 100 GBg

- MAC-E Filter Technology:
 - Excellent energy resolution: ~ 1 eV
 - Large acceptance angle: 0°-51°

Sensitivity better than 0.3 eV (90% CL) after 1000 days of measurement time

Shailaja Mohanty: KATRIN's Latest Neutrino Mass Results & eV-Scale Sterile Neutrino Sensitivity

Institute for Astroparticle Physics

ν mass analysis

Measurement strategy:

- Scan points: ~ 30 HV set points
- Scan time: ~ 3 hours per scan, O(100) scans per campaign, stacked data
- Scan interval: $E_0 40 \text{ eV}$ to $E_0 + 135 \text{ eV}$

Nat. Phys. 18, 160-166 (2022)

■ Model N_{model}(qU, Θ) is fitted to the measured integral spectrum N_{exp}(qU) :

$$N_{ ext{model}}(qU,\Theta) = A \cdot \int_{qU}^{E_0} R_eta(E,\ m_
u^2,\ \Theta) {\otimes} f(E,\ qU) \, dE {+} B_g$$

- 4 model parameters:
 - A Signal amplitude
 - E₀ effective endpoint energy
 - m_{ν}^2 effective mass of electron anti-neutrino
 - Bg Background rate
- 3-tiered blind analysis
 - Freeze analysis on MC data
 - Blinded Model: Modified molecular final state distribution
 - Two different analysis teams: different strategies and codes

Sources of systematic uncertainties

Source: L. Köllenberger

Shailaja Mohanty: KATRIN's Latest Neutrino Mass Results

& eV-Scale Sterile Neutrino Sensitivity

Systematic error propagation via Pull term approach

- Adding additional free parameters (θ_i)
- Constraining parameters with a penalty term
- Adding pull terms widens the χ^2 distribution:

$$\chi^2 \left(m^2, E_0, \operatorname{Sig}, \operatorname{Bg}, \theta_1, \ldots \right) + \frac{\left(\theta_1 - \hat{\theta}_1 \right)^2}{\sigma_{\theta_1}^2} + \ldots$$

In the combined analysis of data across campaigns:

- Pull term as multivariate normal distribution
- Treatment of correlations between campaigns and segments
- High-cost model computations

Analysis Progress

- Suppression of background by factor 2: "Shifted Analyzing Plane" configuration *Eur. Phys. J. C* (2022) 82:258)
- Expected sensitivity < 0.5 eV</p>

Table: KATRIN Neutrino Mass Measurement Campaigns (KNM)

Campaign	Time (hrs)	Counts in ROI	Bg (mcps)
KNM1	522	$1.48 imes10^{6}$	370
KNM2	294	$3.76 imes10^{6}$	278
KNM3-SAP	220	$9.77 imes10^5$	137
KNM3-NAP	224	$1.25 imes10^{6}$	258
KNM-NOM	834	$5.64 imes10^{6}$	150
KNM4-OPT	431	$4.58 imes10^{6}$	150
KNM5	1232	$1.60 imes 10^7$	160

Data taking till 2025

Shailaja Mohanty: KATRIN's Latest Neutrino Mass Results & eV-Scale Sterile Neutrino Sensitivity

Institute for Astroparticle Physics

Latest results of ν mass

First five campaigns (KNM1-5) combined:

- A total of 59 spectra, 1609 data points
- Parameter correlations across datasets
- Post-unblinding a data-combination mistake was uncovered:
 - Resolved by splitting KNM4 into two data sets
 - Approximately 0.1 eV² impact on m_{ν}^2
- Best fit : $m_{\nu}^2 = -0.14^{+0.13}_{-0.15} \text{ eV}^2$
- Statistically dominated uncertainties

Combined result: Upper limit $m_{\nu} < 0.45 \text{ eV}$ (90% CL) (*arXiv:2406.13516v1* [*nucl-ex*])

KATRIN goals: Beyond Neutrino Mass

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

 Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β- decay, 0νββ-decay)

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

- Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β- decay, 0νββ-decay)
- Theoretical motivation:

- Singlet fermions naturally appear in the dark sector
- Members of dark sector could mix with active neutrinos via neutrino portal coupling
- Sterile neutrinos can live at any mass scales: GeV, keV,

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

- Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β- decay, 0νββ-decay)
- Theoretical motivation:

eV

DM e	exists	\implies	uncharged	particles	under	SM	gauge	group
\implies	single	et fern	nions					

- Singlet fermions naturally appear in the dark sector
- Members of dark sector could mix with active neutrinos via neutrino portal coupling
- Sterile neutrinos can live at any mass scales: GeV, keV,

- Experimental hints for eV scale :
 - Appearance LSND (3 σ) and MiniBooNE (4.8 σ) excess observations Explained by ($\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{c}$)
 - Disappearance SAGE and GALLEX: Gallium anomaly (2.9 σ deficit) Explained by $\nu_e \rightarrow \nu_s$
 - The Gallium anomaly reaffirmed by BEST experiment *Phys. Rev. Lett. 128,* 232501 (2022)

Interpretation

- SBL anomalies could be explained by an additional neutrino flavor (*v_s*)
- There must be at least one additional mass squared difference, $3\nu + 1$ framework $\Delta m_{SBI}^2 \approx (1-2) \text{ eV}^2$
- Allowed by solar, atmospheric and long baseline experiments, achieved with $|U_{e4}|^2 \ll 1$

Sterile neutrino in β -decay

Differential decay rate:

Sterile Signal in β -decay Spectrum

■ model N_{model}(qU, Θ) is fitted to the measured integral spectrum N_{exp}(qU):

$$N_{ ext{model}}(qU,\Theta) = A \cdot \int R_{eta}(E,\Theta) \cdot f(E,qU) + Bg$$

- 6 model parameters:
 - A Signal amplitude
 - E₀ effective endpoint energy
 - m² effective mass of electron anti-neutrino
 - Bg Background rate
 - m₄² sterile neutrino mass
 - $|U_{e4}|^2$ sterile neutrino mixing

Karlsruher Institut für Tech

Analysis method for sterile neutrino search

- Extend Tritium β- spectrum model to 3+1 framework
- Grid Scan: $50 \times 50 [\log(|U_{e4}|^2), \log(m_4^2)]$ plane
- Contours are drawn at $\Delta \chi^2 = \chi^2 \chi^2_{BF}$ = 5.99 (95% CL, 2 dof)
- Energy range: [*E*₀ − 40, *E*₀ + 135] eV
- Sensitive to $m_4^2 \leq 1600 \; {
 m eV}^2$ and $|U_{e4}|^2 \leq 0.5$
- Two complementing analyses
 - Case-I Fixed neutrino mass: $m_{\nu}^2 = 0 \ (m_{1,2,3} \ll m_4)$
 - Case-II Free neutrino mass:
 m²_{\u03c0} as nuisance parameter

Figure: Simulated β -spectrum with sterile neutrino signal

Results from First Two Science Runs

• 5.24 \times 10⁶ electrons for 40 eV below E₀, 10^{3} 1265 hours of data Best fit: $-m_4^2 = 59.9 \text{ eV}^2$, $|U_{e4}|^2 = 0.011$, 10^{2} $m_{4}^{2} (eV^{2})$ $m_{\nu}^2 = 0.0 \text{ eV}^2$ $-\Delta\chi^2_{null}=0.66$ Active neutrino mass set free $m_{\nu}^2 = 0 \text{ eV}^2$ $m_{\nu}^2 \text{ free}$KNM1KNM1 Best fit: $- m_4^2 = 87.4 \text{ eV}^2, |U_{e4}|^2 = 0.019,$ ---KNM2 ---KNM2 $m_{\nu}^2 = 0.57 \text{ eV}^2$ -KNM1+2 --- KNM1+2 $-\Delta \chi^2_{null} = 1.69$ Signal-to-background ratio of up to 235 10^{-2} Phys. Rev. D 105, (2022)

 10^{-1}

 $|U_{\mathcal{A}}|^2$

Sensitivity Results From Five Science Runs

- **Case-I**: m_{ν}^2 = 0 eV²
- 40 eV fit range, $|U_{e4}|^2 \in [0, 0.5]$
- Stat. only + all systematics 95% CL
- Gain in overall sensitivity with increased statistics
 S. Mohanty, PoS EPS- HEP2023 (2024)

Impact of Systematics

• Calculating 68% CL uncertainty on
$$|U_{e4}|^2$$
 : $\sigma_{syst} = \sqrt{\sigma_{Stat+Syst}^2 - \sigma_{Stat}^2}$

- Statistically dominated uncertainties
- Largest systematic contribution: Penning Bg (low m_4^2), Column Density (high m_4^2)

Sensitivity comparison to other experimental results

Translation of parameters:

 $\sin^2(2\theta) = 4|U_{e4}|^2(1-|U_{e4}|^2)$

- Large Δm_{41}^2 solutions of RAA and BEST+GA anomalies excluded
- Current KATRIN data extends exclusion bounds from SBL oscillation experiments for $\Delta m_{41}^2 \ge 10 \text{ eV}^2$
- Probing large parameter space for light sterile neutrino anomalies
- Expected KNM1-5 sensitivity yields improved constraints in the sterile parameter space

Summary

- KATRIN's high-precision tritium spectrum measurement sets stringent neutrino mass limits.
- Established the world-best direct neutrino mass limit: $m_{eta} < 0.45 \, {
 m eV}$ (90% CL)
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis

Summary

- KATRIN's high-precision tritium spectrum measurement sets stringent neutrino mass limits.
- Established the world-best direct neutrino mass limit: $m_{\beta} < 0.45 \, \text{eV}$ (90% CL)
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results of sterile neutrino search first two science runs (KNM1 + KNM2):
 - No significant sterile neutrino signal found in KNM1 + KNM2.
 - Improved exclusion limits compared to other experiments.

- KATRIN's high-precision tritium spectrum measurement sets stringent neutrino mass limits.
- Established the world-best direct neutrino mass limit: $m_{\beta} < 0.45 \, \text{eV}$ (90% CL)
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results of sterile neutrino search first two science runs (KNM1 + KNM2):
 - No significant sterile neutrino signal found in KNM1 + KNM2.
 - Improved exclusion limits compared to other experiments.
- Sterile neutrino sensitivity projection for five science runs (KNM1...5):
 - KATRIN can extend the coverage of BEST and reactor experiments.
 - Sensitivity dominated by statistical uncertainties

Outlook

- KATRIN has the capability to study several physics topics beyond neutrino mass: relic neutrinos, lorentz invariance violation, non-standard interactions.
- Data-taking until 2025 with a target senstivity below 0.3 eV
- Stay tuned for upcoming eV sterile neutrino release!

Thank You

Shailaja Mohanty: KATRIN's Latest Neutrino Mass Results & eV-Scale Sterile Neutrino Sensitivity

Institute for Astroparticle Physics

Backups

Experimental hints

- Appearance LSND (3σ) and MiniBooNE (4.8σ) excess observations. Explained by (ν_μ → ν_s → ν_e)
- Disappearance SAGE and GALLEX: Gallium anomaly (2.9 σ deficit). Explained by $\nu_e \rightarrow \nu_s$
- The Gallium anomaly reaffirmed by BEST experiment

Measurement time distribution - Standard vs Flat

Institute for Astroparticle Physics

Raster scan on different measured time distributions

Institute for Astroparticle Physics

KNM1-KNM5 Analysis Results

Impact of systematic uncertainties on m_{ν}^2

Impact of active neutrino on sterile neutrino search

Possible treatments for m_{ν}^2 : Extension of Case-II

• Free m_{ν}^2

Correlation between m_4^2 and m_{ν}^2 .

Pull term using **0**±**1** eV²

Intermediate sensitivity between two extremes (fixed and free)

■ m²₄ > m²_ν ≥ 0: Limit m²_ν by mass of right-handed neutrino

Reasonable option of optimizing sensitivity in addition to free m_{ν}^2 case

Active neutrino correlation with sterile neutrino

FIG. 4. The correlation between active and sterile neutrino mass is approximately a linear slope $m_b^2 = a_{\rm slope}$, $m_a^2 + {\rm const}$ for various values of m_a^2 and $|U_{eq}|^2$ by analyzing simulated spectra. The gradient indicates the magnitude of $a_{\rm slope}$. For small mixing $|U_{eq}|^2 < 0.01$, we observe small slope values $|a_{\rm slope}| < 0.01$. For larger mixing, we find a strong negative correlation for larger $m_a^2 \lesssim 30 \ {\rm eV}^2$ and a weaker positive correlation for larger m_a^2 .

Shailaja Mohanty: KATRIN's Latest Neutrino Mass Results & eV-Scale Sterile Neutrino Sensitivity

Testing applicability of Wilks' Theorem

Previously done

- Generate O(10³) twins with statistical fluctuations for particular choice of MC truth
- Perform fitting for sterile parameter values on a grid and for MC truth for each sample (m²_ν = 0)
- Evaluate $\Delta \chi^2 = \chi^2_{\rm MC \ truth} \chi^2_{\rm best \ fit}$ for each sample
- Compare distribution of $\Delta \chi^2$ values to χ^2 -distribution with 2 dof

Sterile neutrino result

Analysis case	Dataset	m_4^2	$ U_{e4} ^2$	$m_{ u}^2$	$\chi^2_{\rm min}/{ m dof}$	р	$\Delta \chi^2_{ m null}$	Significance	p
[KNM1	77.5 eV ²	0.031	Fixed	21.4/22	0.50	1.43	51.0%	
	KNM2	0.28 eV^2	1.0	Fixed	27.5/23	0.24	0.74	31.0%	
	KNM1 + 2	59.9 eV^2	0.011	Fixed	50.4/47	0.34	0.66	28.1%	0.47
Π	KNM1	21.8 eV ²	0.155	-5.3 eV ²	19.9/21	0.53	1.30	47.9%	
	KNM2	98.3 eV ²	0.027	1.1 eV^2	25.0/22	0.30	2.49	71.2%	
	KNM1 + 2	87.4 eV^2	0.019	0.57 eV^2	49.5/46	0.34	1.69	57.1%	0.20

MAC-E Filter: High resolution β -spectroscopy

Magnetic Adiabatic Collimation & Electrostatic Filter:

- Adiabatic transport: $\mu = \frac{E_{\perp}}{B} = \text{const.}$
- Magnetic field reduction: *B* drops by $2 \cdot 10^4$ from solenoid to analyzing plane: $E_{\perp} \rightarrow E_{\parallel}$
- Retardation potential: Only electrons with E_{||} > eU₀ can pass the retardation potential
- Energy resolution: $\Delta E = E_{\perp,max,start} \cdot \frac{B_{min}}{B_{max}} < 1 \text{ eV}$

Momentum tranfsormation without the E-field

Published ν mass results

First campaign (spring 2019):

- Total statistics: 2 million events
- Best fit: $m_{\nu}^2 = -1.0^{+0.9}_{-1.1} \text{ eV}^2$ (stat. dom.)
- Limit: *m*_ν < 1.1 eV (90% CL)

Second campaign (autumn 2019):

- Total statistics: 4.3 million events
- Best fit: $m_{\nu}^2 = 0.26^{+0.34}_{-0.34} \text{ eV}^2$ (stat. dom.)
- Limit: *m*_ν < 0.9 eV (90% CL)

Combined result: Upper limit $m_{\nu} < 0.8 \text{ eV}$ (90% CL) (*Nature Phys. 18 (2022) 2, 160-166*)

