

Update on the Rectilinear Cooling Channel Design

Ruihu Zhu (瑞虎 朱)

Institute of Modern Physics, Chinese Academy of Sciences University of Chinese Academy of Sciences

> Supervisor: Jiancheng Yang (建成 杨) Special thanks to Chris Rogers (RAL) 2024.02.21

> > zhuruihu@impcas.ac.cn

Cooling cell configuration

Large dispersion (stage 1 before bunch merging)

> D=10 cm, β=70 cm

	LH2 + normal RF	LiH + normal RF	LH2 + π RF	LiH + π RF	
Stage length	101 m	137 m	104 m	142 m	
Dipole strength 0.0653 T		0.0653 T	0.0653 T	0.0653 T	
On-axis wedge length	14.5 cm	2.7 cm	26 cm	2.7 cm	
Wedge apex angle	40°	7.8°	66°	7.8°	
RF #	6	6	3	4	
RF length	19 cm	19 cm	39.3 cm	39.3 cm	
RF gradient	RF gradient 25.96 MV/m		25.94 MV/m	25.95 MV/m	
RF phase	19.16°	19.76°	23.11°	19.68°	
Transverse ε	6.43 mm	6.88 mm	6.58 mm	6.87 mm	
Longitudinal ε	Longitudinal ε 13.2 mm 1 ²		1.27 mm	11.8 mm	
Transmission	71.6%	64.5%	60%	64.5%	

Small dispersion (stage 1 before bunch merging)

> D=6 cm , β=70 cm

	LH2 + normal RF	LiH + normal RF	LH2 + π RF	LiH + π RF	
Stage length	104 m	122 m	113 m	137 m	
Dipole strength	Dipole strength 0.6*0.0653 T		0.6*0.0653 T	0.6*0.0653 T	
On-axis wedge length	14.5 cm	3.1 cm	26 cm	3.1 cm	
Wedge apex angle	45°	10°	73°	10°	
RF#	6	6	3	4	
RF length	19 cm	19 cm	39.3 cm	39.3 cm	
RF gradient	25.83 MV/m	25.91 MV/m	25.75 MV/m	25.68 MV/m	
RF phase	18.53°	21.36°	22.05°	22.74°	
Transverse ε	5.49 mm	5.86 mm	5.49 mm	6.07 mm	
Longitudinal ε	Longitudinal ε 19 mm		18.4 mm	15.4 mm	
Transmission	77.4%	69.8%	68.1%	69.2%	

Stage 2 and 3 (before bunch merging)

	Stage 2	Stage 3		
Stage length	107 m	66.4 m		
Dipole strength	0.067 T	0.11 T		
Dispersion	5.7 cm	4 cm		
β	45 cm	30 cm		
On-axis wedge length	10.5 cm	15 cm		
Wedge apex angle	60°	100°		
RF #	4	5		
RF length	19 cm	9.5 cm		
RF gradient	25.84 MV/m	31.74 MV/m		
RF phase	23.18°	23.84°		
Transverse ε	2.66 mm	1.66 mm		
Longitudinal ε	7.28 mm	3.91 mm		
Transmission	85.7%	86.9%		

Stage	Cell length [m]	Total length [m]	rf frequency [MHz]	rf gradient [MV/m]	t rf #	rf length [cm]	Coil tilt [deg]	Pipe radius [cm]	Dispersion [cm]	Wedge angle [deg]
A1	2.000	132.00	325	22.0	6	25.50	3.1	30.0	10.7	39
A2	1.320	171.60	325	22.0	4	25.00	1.8	25.0	6.8	44
A3	1.000	107.00	650	28.0	5	13.49	1.6	19.0	4.2	100
A4	0.800	70.40	650	28.0	4	13.49	0.7	13.2	1.9	110
Begi	in 1	17.00	46.00	0	2	255				
Stag	e_{T}	" [mm]	$\varepsilon_L^{\text{sum}}$ [m		P_z^{sum}	Mev/c		[%]		
A1		6.28	14.48	8	2	238	7	0.6		
A2		3.40	4.64	4	2	229	8	7.5		
A3		2.07	2.60	0	2	220	8	8.8		
A4		1.48	2.3	5	2	215	9	4.6		

Until the end of stage 3:

✓ The stage length is reduced by 132.6m (32%).

Cell length: stage 1, 1.8 m stage 2, 1.2 m stage 3, 0.8m

- ✓ Transverse emittance is 19.8% smaller and longitudinal emittance is 50.4% larger. (same 6D emittance)
- ✓ Transmission in stage 1 is 7% higher but in stage 2 and stage 3 is 2% lower.

End of stage 3 (before bunch merging)

Next steps

- Re-calculate the emittance of the 21 bunches within -20 ~ 40 ns.
- Try to increase the dispersion to reduce the longitudinal emittance without making the transmission worse.
- Add one more stage for smaller emittance. (ϵ_{\perp} =1.3 mm, ϵ_{\parallel} =1.7 mm in bunch merging paper)
- Sort out the problems in the previous design for the cooling section after the bunch merging. (e.g., using the physical dipole fringe field...)