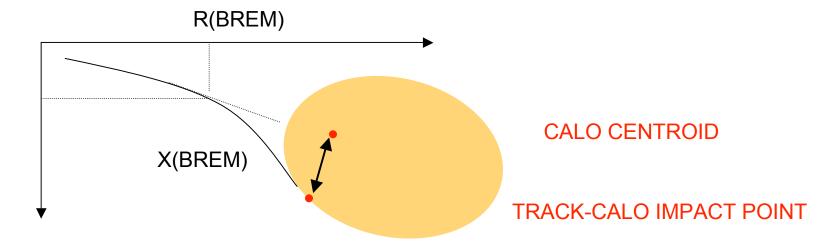
CAT Meeting CERN 24-May-2006

Status of SM CAT Activities

Cristobal Padilla (CERN)

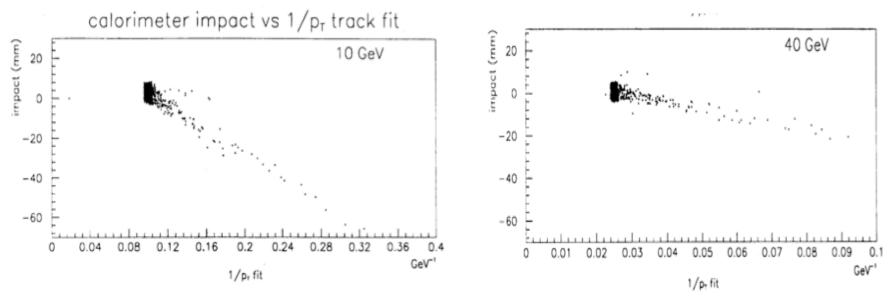

Outline:

- 1. Plans for Bremsstrahlung recovery
- 2. New variable for offline electron selection
- 3. Trigger efficiencies using $Z \rightarrow e^+e^-$ events
- 4. Things not covered
 - Magnetic field studies for ID reconstruction
 - MC generator differences
 - Tau trigger optimization for Z and W
 - Luminosity measurement studies

Plans for Bremsstrahlung Recovery Algorithm

Bremsstrahlung signature :

- Track with large number of outliers after the point of Brem
- Kink in radius curvature



- B field fans out the bremsstrahlung energy in the r-phi direction
- But Calorimeter cluster centroid position to large extend unaffected by Bremsstrahlung

Anne-Catherine

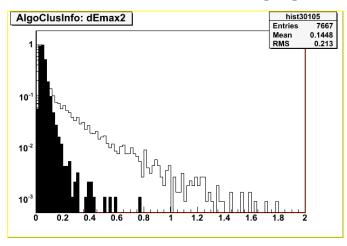
Plans for Bremsstrahlung Recovery Algorithm

Follow ideas from : "ASCOT/EAGLE INDET-NO-015" september 92 & Pavel Nevski "Electron identification using energy momentum matching in the ASCOT/EAGLE Inner detector"

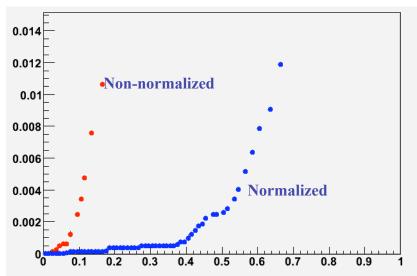
- Exploit correlation of track calorimeter impact point calorimeter centroid vs 1/pT
 - The energy lost in Bremsstrahlung is correlated with xbrem
- Bremsstrahlung fit with 7 parameters : 5 Helix parameters + 2 for the Bremsstrahlung position (X,R)
- Try several (X,R) positions, modify 1/pT (according to the plot above) compute new $\phi,$ minimize $\chi 2$
- Bremsstrahlung more likely to occur at a tracking layer (regions of highest density)

Status and Plans

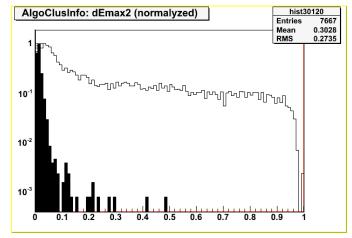
- Code developed with offline release 11.5.0
- Tests still to be done before being included in an official offline release
- Future plans for Bremsstrahlung studies
 - Implement a similar method in the EF (Tetiana)
 - Study how to recover the efficiency lost by this effect at LVL2


Electron Identification and Jet Rejection

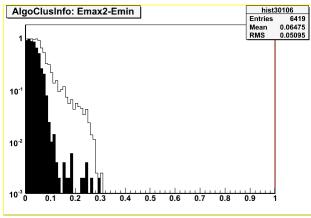
Victor

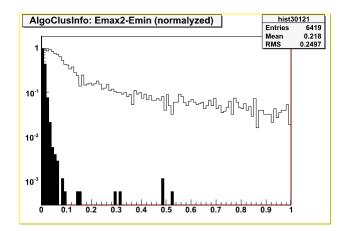

- With release 11.0.41:
- Apply "new cuts" (normalized to the maximum cell energy in the first EM sampling) to compare their efficiency with "old" one for:
 - electrons Et = 25 GeV
 - electrons Et = 10 GeV
 - jets (JF17)

Effect of Normalized cuts

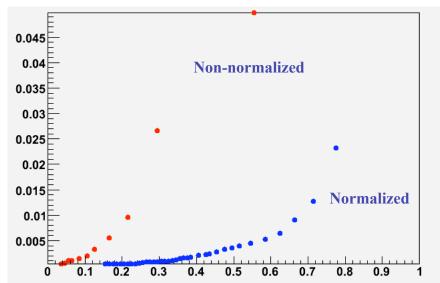

 $\Delta E_{max2} = E_{max2}/(1+9x10^{-3}E_t)$, where E_{max2} - second maximum in the cluster in the 1st sampling

dEmax2 (Rej electrons vs. Rej Jets)


 $\Delta E_{max2}/E_{max}$, where E_{max} - maximum in the cluster in the 1st sampling


For an electron rejection of 0.3%. the normalized variable rejects 50% of the jets (compared to 10% of the jets rejected if the non-normalized variable is used)

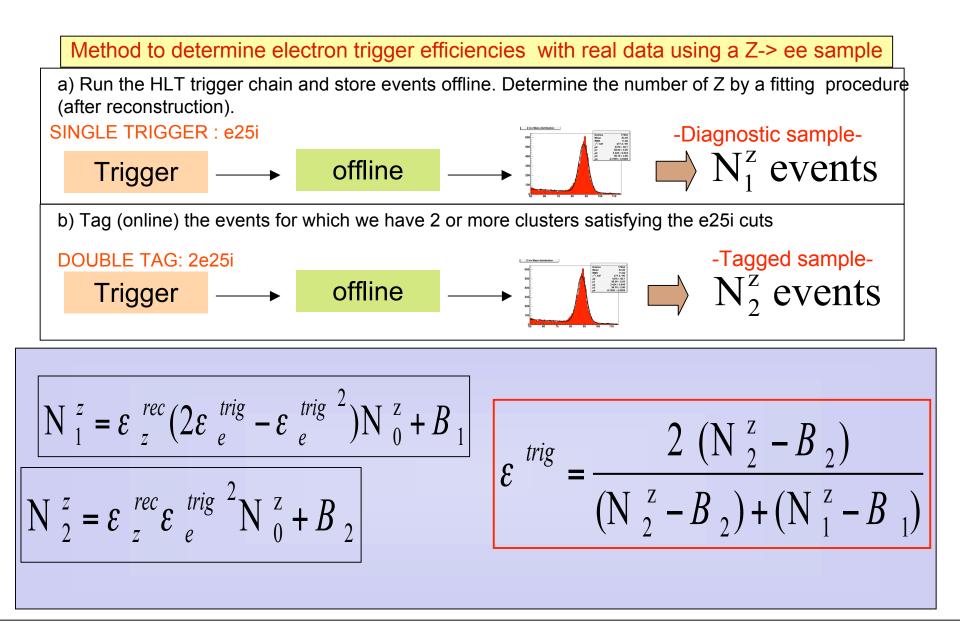
Effect of Normalized variables


 $\Delta E = E_{max2}$, - E_{min} where E_{max2} - second maximum in the cluster in the 1st sampling, E_{min} – energy of the strip with minimum between 1st and 2nd maxima

Normalized for $\Delta E / E_{max}$

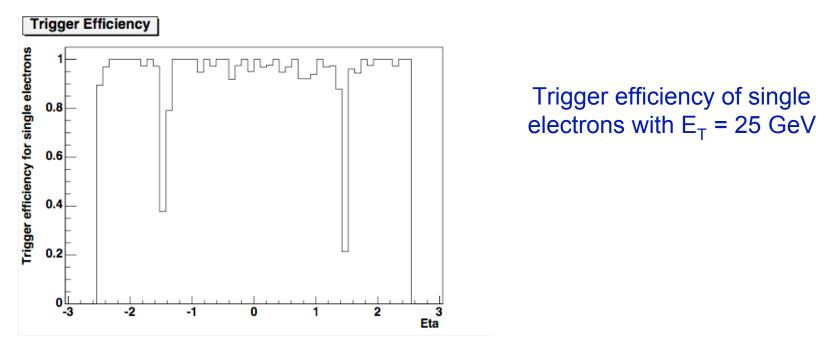
dE (Rej electrons vs. Rej Jets)

For an electron efficiency of 99%, the normalized variable rejects more than three times more jets


Electron Identification and Jet Rejection

When release 12.0.0 will ready

- Efficiency of electron identification and jet rejection as function of h
- For jets separate
 - isolated electrons (W,Z,t)
 - Non-isolated electrons (b,c,π⁰)
 - And others (conversion)
- And look at efficiency of their identification


And try to apply the same method at LVL2 (where we have our larger efficiency drop today with respect to offline)

Trigger Efficiencies using $Z \rightarrow e^+e^-$ events

Trigger Efficiencies using Z→e⁺e⁻ events

Study performed with offline release 11.0.5 using CSC data on ESD

- The LVL2 trigger efficiencies computed with both methods are
 - Single electron: 94.2±0.6% (96.3±0.5% for is_em=0 electrons)
 - Using $Z \rightarrow e+e^-$ method: 93.4±0.6 (96.8±0.5 for is_em=0 electrons)
 - Small differences being investigated
 - Somehow surprised that efficiencies have improved so much with respect to Rome data

Teresa