PAUL SCHERRER INSTITUT

SwissFEL

Gotthard: a charge integrating silicon strip detector for XFEL and Synchrotron applications.

A. Mozzanica[†], A. Bergamaschi, R. Dinapoli, D. Greiffenberg, B. Henrich, I. Johnson, D. Maliakal, V. Radicci, C. Ruder, B. Schmitt and X. Shi *Paul Scherrer Institut*, *5232 Villigen*, *CH*.

Corresponding author: aldo.mozzanica@psi.ch

Automatic gain principle

Before the measurement the amplifier is in reset and the gain is set to high. When the reset is released the charge starts to be integrated on the feedback capacitor. If the output of the amplifier reaches the threshold, a 2nd or 3rd capacitor is switched in, thus lowering the output. At the end of the measurement the analog an gain information are readout. The switching works for an instantaneous charge release (e.g. XFEL pulse) as well.

channel OUT

CDS+storage

The readout ASIC

Channel Architecture

IBM 130nm technology
6.3x1.4mm² - 128 channels - 50µm pitch
3 automatic gain stages + 1 High Gain mode
Dead time free operation possible
fast readout chain (off channel-off chip drivers), to sustain 32MHz readout with no cross-talk
4 differential analog outputs
rad-hard design
~ 1mW/ch total consumption

╔┈╗╴╢┽╢╴╗╴╗┽╢┽╗┼╗┽╖┽╗┼╗┽╢┽╗┈╗┽╢┼╗╢╗╢┍╢╷╗┽╗╌╢┽╢╎╗┽╗╌╢┽╢╧╗╢╗┶╢┽╖┼╗┽╖┽╢┼╗╢╗╧╖┼╢┽╖┼╗┽╢┥╗╴╗┥╢┽╗╴╗┥╢┥╗╴╝╸╢

The detector module

The detector module consists of 10 readout ASICs for a total of 1280 channels at 50µm pitch. Each module is an independent unit with its own Gigabit link, for fast frame rates (60kHz continuous, 1MHz in bursts) and easy scalability. Slow control is handled by a Blackfin embedded linux system.

Server

Test results

GOTTHARD systems have been tested with X-Ray

fluorescence light and at Synchrotron sources.
Noise ~200 e.n.c. (r.m.s.) for High Gain mode
Noise ~300 e.n.c. for the 1st gain of gain switching mode

•Noise at low gains ~10 times smaller than Poisson fluctuations

•Saturation at 10⁴ photons

•Gain variation better than 1.5%

Linearity within 0.5%

Board architecture and data flow

Operation modes for Synchrotron applications

Integration 1	Integration 2	Integration 3	Integration 4	Integration 5	Integration 6	Integration n	
	Doodout 1	Doodout 2	Doodout 2	Doodout 4	Doodout E	Peadout n-1	D

GOTTHARD specifications

ASIC technology	IBM 130nm				
module size	6.7x12.5cm ²				
sensitive area	64x8mm ²				
sensor thickness	320-500 μm				
pitch	50 µm				
noise r.m.s.	~200 e.n.c.				
dynamic range	10 ⁴ 12keV photons				
min Energy	<3.5 keV				
linearity	better than 0.5%				
point spread function	O(pitch)				
min int. time	80ns				
dead time	<50ns				
cooling	air				
readout time = $1 /$	60kHz continuos				
frame rate	1MHz burst				

International Workshop on Semiconductor Pixel Detectors for Particles and Imaging, Inawashiro, Japan 2–7 September 2012