Multi-channel LuAG-APD Pixel Array with ToT Readout System for PET application

K. Shimazoe, H. Takahashi, T. Orita, Y. Nakamura
The University of Tokyo
Dep. Of Bioengineering
Dep. Of Nuclear Engineering and management
Outline

* Introduction (Pixel detector in PET)
* LuAG-APD-Pixel module
* Some Results
* Conclusions
Modern High resolution PET system requires a large number of granulated gamma detectors (100,000, < 2mm). Degradation in Analog Sum Circuit, Pixel gamma detector & multi-channel front-end ASIC. A large number of interconnections cause a wiring problem in PET.
ToT based Digital PET

Conventional PET

• Anger Logic (degrade spatial resolution)
• Timing Circuit and Pulse Height (low integration)
• Analog Readout and Multiplex

→

ToT (Time over Threshold) based PET

• Individual Readout / Leading Edge
• Energy information with a binary line
• Digital Readout and Multiplex
• Low power and a small number of transmission Line
• Compact
Pr:LuAG Pixel Array

Pixel gamma detector

<table>
<thead>
<tr>
<th>Scintillators</th>
<th>Pr:LuAG (Lu₅Al₅O₁₂)</th>
<th>Ce:GSO (Gd₂SiO₅)</th>
<th>Ce:LSO (Lu₂SiO₅)</th>
<th>BGO (Bi₄Ge₃O₁₂)</th>
<th>Tl:Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>6.7</td>
<td>6.7</td>
<td>7.39</td>
<td>7.13</td>
<td>3.67</td>
</tr>
<tr>
<td>Light Yield (BGO=100)</td>
<td>330</td>
<td>200</td>
<td>400-500</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Decay Time (ns)</td>
<td>< 25</td>
<td>60</td>
<td>40</td>
<td>300</td>
<td>230</td>
</tr>
<tr>
<td>Peak emission (nm)</td>
<td>310</td>
<td>430</td>
<td>420</td>
<td>400</td>
<td>415</td>
</tr>
<tr>
<td>Energy Resolution (%@662keV)</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>5.6</td>
</tr>
<tr>
<td>Hygroscopicity</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Cleavage</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Melting Point (°C)</td>
<td>1970</td>
<td>1950</td>
<td>2150</td>
<td>1050</td>
<td>651</td>
</tr>
</tbody>
</table>

Specifications

- **Pixel size:** 2 × 2 × 10mm
- **Reflector:** BaSO₄
- **Total size:** 31.8 × 31.8mm
- **Channel number:** 144 (12 × 12)
- **Pixel gap:** 0.25mm

Product from Furukawa corporation
LuAG-APD Pixel array

UV-enhanced Pixel APD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>2 × 2mm</td>
</tr>
<tr>
<td>Readout Scheme</td>
<td>Individual readout</td>
</tr>
<tr>
<td>Total size</td>
<td>31.8 × 31.8mm</td>
</tr>
<tr>
<td>Channel number</td>
<td>144 (12 × 12)</td>
</tr>
<tr>
<td>Pixel gap</td>
<td>0.25mm</td>
</tr>
<tr>
<td>Fill factor</td>
<td>80%</td>
</tr>
<tr>
<td>Type</td>
<td>UV-enhanced</td>
</tr>
<tr>
<td>QE</td>
<td>5% → 55% @310nm</td>
</tr>
<tr>
<td>Dark current</td>
<td>0.1~0.7nA @gain = 50</td>
</tr>
<tr>
<td>Difference of the gain</td>
<td>±15% @gain = 50</td>
</tr>
<tr>
<td>Bias voltage</td>
<td>380V @gain ~ 100</td>
</tr>
</tbody>
</table>
Time over Threshold based ASIC

ToT ASIC and Board

- TSMC 0.25um CMOS process
- Supply voltage: 3.3V
- Charge Sensitive Preamplifier
 and Time over Threshold circuit
- channel No.: 48channel
- Die size: 2mm × 5mm
- Board size: 3cm × 6cm
- The use of bare chip and wire bonding
- External DAC for individual threshold settings
Assembled Pixel Detector module
* Preamp ENC = 510 electrons
* Preamp rise time = 12ns
* Typical ToT pulse width = 100ns - 400ns (sampling with 250MHz clock - 7bit)
* Power consumption (-200mW) for ASIC board (ASIC,DAC)
* External threshold control pitch = 0.8mV
Linearity of Typical Channel

Linearity Curve matches with the HSPICE simulation
The actual energy is reconstructed with look-up table
DAC=12bits DAC
Threshold Adjustment pitch = 0.8mV
Optimized for 10fC-60fC which is the range of interest
Threshold variation

Scanned thresholds in one ASIC
The variation is within ±90mV
Energy Spectrum (\(^{22}\text{Na}\))

- 511keV
- 1.28MeV
- 10\% @ 511keV (FWHM)
- 4ns sampling with FPGA (6-7 bits)
144 channel (12 x 12) energy spectrum 22Na >95% is working
Timing Resolution (Coincidence)

Coincidence modules
High voltage = 390V
Timing resolution = 6ns (FWHM) (with no energy window)
4.2ns for a single module
Pulse width Measurement System

DAC control, Pulse Width Spectrum
Multiplex readout scheme

Pulse train (ToT, X, Y address)
Wired-OR Multiplexing
Transmission lines (144 -> 1)

<table>
<thead>
<tr>
<th>X (T=20ns)</th>
<th>Y (T=20ns)</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1T</td>
<td>1T</td>
<td>1</td>
</tr>
<tr>
<td>1T</td>
<td>2T</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>12T</td>
<td>11T</td>
<td>143</td>
</tr>
<tr>
<td>12T</td>
<td>12T</td>
<td>144</td>
</tr>
</tbody>
</table>
Reconstructed Transmission image

1MBq 22Na source

Mask
8 module PET system

8 LuAG APD Pixel module
Ring diameter = 72.5mm (FOV=diameter 34.5mm x axial 25mm)
Reconstructed Image (point source)

- APD PET with 8 pixel detector module is assembled
- 1.76mm spatial resolution is observed with 0.5φx5mm 22Na columnar source
- Matches with the simulated resolution

1.76 mm FWHM
3.20 mm FWTM

22Na columnar
Φ0.5mm
5mmL

0.5φx5mmのNa22円柱状線源を用いた、PET画像
Conclusion

* 144 channel LuAG-APD Pixel detector is developed with ToT based individual readout
* Successfully working as PET detector with 4.2ns time resolution and 10% energy resolution
* Spatial resolution 1.76mm (matches with simulation)
* MRI compatible-PET with digital readout technique

This study is supported by New Energy and Industrial Technology Development Organization (NEDO) project
Thank you for your attention