

Impact of pixel size and shape on physics analysis PIXEL 2012

Christoph Nägeli

PSI & ETH

September 6, 2012

Motivation of this study

- Current situation at the LHC
 - ► CMS pixel size $100 \times 150 \mu \text{m}^2$
 - ► Atlas pixel size $50 \times 400 \mu \text{m}^2 \xrightarrow{\text{IBL}} 50 \times 250 \mu \text{m}^2$.
- Usually studies show impact parameter resolution of pixel detectors

$$\sigma(\text{pix}) \Rightarrow \sigma(\text{impact})$$

- Physics analysis on the other hand start with an abstract object 'track' which in some intransparent way is related to the above quantity.
- But what we want is

$$\sigma(\text{pix}) \Rightarrow \sigma(\text{impact}) \Rightarrow \text{Physics result}$$

- ▶ Investigate the outcome on sample physics analysis $B_s^0 \to \mu^+\mu^-$.
- Get basic behavior from simple models
 - ⇒ Do not get lost with to many parameters. . .

$$B_s^0 o \mu^+ \mu^-$$

- ▶ Experiments at LHC looking for the decay $B_s^0 \to \mu^+\mu^-$.
- ▶ Clear signal topology: Two muons originating from the same vertex.
 - ⇒ Nice candidate for this study.
- ▶ This decay is heavily suppressed in SM¹

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.23 \pm 0.27) \times 10^{-9}$$

⇒ New physics can possibly be found.

¹arXiv:1208.0934v1

Event

- ▶ In reality, huge amount of tracks.
- Crucial to know whether two tracks actually meet, not to drown in background

Track model

▶ Need 5 parameters to describe a track (homogeneous magnetic field)

$$(d_0, d_z)$$
 impact parameters (ϕ, θ, p_\perp) momentum direction & curvature

- ▶ Ability to see wether two tracks are from the same vertex is described by the impact parameters.
 - resolution of impact parameters given mostly by pixel detector.

Pixel size

- ▶ Position resolution of the pixel detector given by
 - 1. Pixel dimensions.
 - 2. Charge sharing of pixels.
- Constraints:
 - Enough electrons have to be collected to trigger pixel readout electronics.
 - Transistors have to fit in the given shape.

Impact parameter resolution

PAUL SCHERRER INSTITUT

ETH Institute for Particle Physics

▶ Impact parameter resolution:

$$\left. \begin{array}{c} \text{Multiple scattering} \Leftrightarrow A/p_{\perp} \\ \text{Sensor resolution} \Leftrightarrow B \end{array} \right\} \Longrightarrow \sigma^2 = (A/p_{\perp})^2 + B^2$$

CMS-PAS-TRK-10-005

Analysis

Two Monte Carlo simulations have been produced

- 1. Signal MC, each event containing one $B_{\epsilon}^0 \to \mu^+ \mu^-$.
 - $\rightarrow \approx 1 \times 10^7 \text{ Events } \hat{\approx} 6.4 \text{ ab}^{-1}$
- 2. Background MC, Minimum Bias events containing b quarks and two μ with $p_{\perp} > 2.5$ GeV.

$$\rightarrow \approx 1.7 \times 10^{10} \text{ Events } \hat{\approx} 170 \, \text{nb}^{-1}$$

- Analysis consists of
 - Construct candidates by combining two muons.
 - Apply preselection cuts
 - Randomize kinematic variables according to assumed resolution scenario.
 - Find cut on distance of closest approach (doca) of the two muon tracks s.t. $\varepsilon_{\rm sig}=0.9$.
 - ⇒ With perfect resolution doca is enough to separate signal from background.
 - Compute expected upper limit.

$$egin{array}{c|c} p_{\perp}(\mu) &> 2.5 \; {
m GeV} \ |\eta(\mu)| &< 2.5 \ d_{3,{
m truth}} &> 25 \; \mu{
m m}. \end{array}$$

Scenario A = 0

- Understand qualitatively the impact of the asymptotic term affected most by the pixel resolution
- lacktriangle 'saturation' of upper limit result starts at $\sigma(d_0) pprox \sigma(d_z)$

Eta dependence

- ▶ Improvement in UL depends on the η region. Qualitatively we have for $\sigma(d_z) \cdot \sigma(d_0) = \text{const}$:
 - $|\dot{\eta}| < 0.6 \Rightarrow$ analysis gains more improving $\sigma(d_z)$

 $|\eta| > 1.2 \Rightarrow$ analysis gains more improving $\sigma(d_0)$

0.6 < Inl < 1.2

1.8 < |n| < 2.5

CMS like pixel detector Compare two models with the preselection tightened to $p_{\perp} > 3~{\rm GeV}$ and $|\eta| < 1.4$:

- Current design
- Upgrade design

	Current	Upgrade	Change
	Current	Opgrade	
doca	$139~\mu\mathrm{m}$	75 $\mu\mathrm{m}$	-46 %
$N_{ m bkg}$	60 ± 8	39 ± 6	-35%
$N_{ m sig}$	$(1.369 \pm 0.006) imes 10^{-3}$	$(1.369 \pm 0.006) imes 10^{-3}$	-
UĽ	$(3.4 \pm 0.2) \times 10^{-5}$	$(2.8 + 0.2) \times 10^{-5}$	-18%

"Long pixels"

Convolute a long z-pixel size into the CMS like detector

- ▶ Intrinsic sensor resolution given by asymptotic term *B*.
 - ⇒ Consider straight tracks.
- ▶ What happens to $\sigma(\mathrm{impact}_z)$ when we enlarge $\sigma(\mathrm{pix}_z)$.
- Consider two models with
 - 1. $\sigma(\text{pix}_{xy}) = 15 \ \mu\text{m}, \ \sigma(\text{pix}_z) = 20 \ \mu\text{m}.$
 - 2. $\sigma(\text{pix}_{xy}) = 15 \ \mu\text{m}, \ \sigma(\text{pix}_z) = 70 \ \mu\text{m}.$

Estimating B

- $ightharpoonup p_{\perp} o \infty \Rightarrow$ tracks are straight lines
- Compute impact parameter resolution by
 - Generate track with associated hits
 - Randomize hits using assumed resolution
 - Fit track and compute impact parameter
- Assume average pixel resolution:

$$\sigma(\mathrm{pix}_{xy}), \sigma(\mathrm{pix}_z) = 15 \ \mu\mathrm{m}, 20 \ \mu\mathrm{m}$$

 $\Rightarrow \sigma(d_z) \approx 37.5 \mu\mathrm{m}$
 $\sigma(\mathrm{pix}_{xy}), \sigma(\mathrm{pix}_z) = 15 \ \mu\mathrm{m}, 70 \ \mu\mathrm{m}$
 $\Rightarrow \sigma(d_z) \approx 130 \mu\mathrm{m}$

"Long pixel" resolution

- ► Separate resolution into *A*-term and *B*-term.
- ► Scale *B*-term by 3.5
- Convolute the two again.

"Long pixel results"

► Full Model

	Current	Long	Change
doca	139 $\mu\mathrm{m}$	240 $\mu\mathrm{m}$	+73%
$N_{ m bkg}$	60 ± 8	83 ± 9	+38%
$N_{ m sig}$	$(1.369 \pm 0.006) \times 10^{-3}$	$(1.369 \pm 0.006) imes 10^{-3}$	-
UL	$(3.4 \pm 0.2) \times 10^{-5}$	$3.9^{+0.1}_{-0.2} imes 10^{-5}$	+15%

► Asymptotic Model

	Current	Long	Change
doca	66 $\mu\mathrm{m}$	214 $\mu\mathrm{m}$	+224%
$N_{ m bkg}$	36 ± 6	81 ± 9	+125%
$N_{\rm sig}$	$(1.369 \pm 0.006) imes 10^{-3}$	$(1.369 \pm 0.006) imes 10^{-3}$	-
UL	$(2.7 \pm 0.2) imes 10^{-5}$	$(3.9 \pm 0.2) \times 10^{-5}$	+32%

Summary

- Simple asymptotic model:
 - \Rightarrow Detector performance $\sim \sigma(d_0)^2 + \sigma(d_z)^2$. Optimal result we need to enhance resolution in a balanced way.
 - ⇒ Optimal choice clearly depends on other detector parameters as well. Might be worth for detectors to investigate this more carefully.
- Reducing the resolution penalty from multiple scattering greatly enhances a detector like CMS.
 - ⇒ However in 'real' analysis, higher p_⊥ cuts are applied which should reduce this effect.
- ▶ Enlarging the *z*-pixel size of a CMS like detector by a factor 3.5 does increase the upper limit by a significant amount.
 - \Rightarrow Again, 'real' analysis expected to lie in between the two states results as p_{\perp} cut higher and so less effected of multiple scattering.

Acknowledgments to R. Horisberger for many inputs and discussions of this study.

THANK YOU FOR YOUR ATTENTION