PHENIX Silicon Pixel Detector Construction, Operation, and the first Results

Atsushi Taketani

<u>RIKEN</u> Nishina center

RIKEN Brookhaven Research Center

<u>Outline</u>

- 1. Detector Hardware
- 2. Installation and Peripheral
- 3. Operation and Physics result
- 4. Issue and repair work
- 5. Summary

<u>History</u>

2004.8 First proposal

- 2007.6 Start Construction
- 2008.8 Beam test at FERMILAB
- 2010.10 Barrel assembly start
- 2010.12 Installed and operation start

Detector and Hardware

Requirements for Vertex Tracker

Heavy Ion collision and polarized proton-proton up to CMS 200 / 500GeV

- High precision tracking for displaced vertex measurement.
 - ct ~ 100 μ m(D), ~400 μ m(B)
- Large coverage tracking capability with momentum resolution (|\eta|<1.2 , and full azimuthally with σ/P ~ 5%P)

Environment side

Physics side

- <u>High charged particle density 'dN/dη' ~ 700 @η=0 ~ 2000 Tracks</u>
- High Radiation Dose ~100KRad@10Years
- <u>High Luminosity 2*10³² cm⁻² s⁻¹@PP -> High rate readout</u>
- <u>Low Material Budget <- avoid multiple scattering and photon</u> <u>conversion for electron measurement by outer detectors.</u>

Pixel : inner 2 layers and Stripixel: outer 2 layers

Pixel detector = inner 2 layers of VTX 1st layer: 10 full pixel ladders = 20 half ladders = 40 sensor modules 2nd layer: 20 full pixel ladders = 40 half ladders = 80 sensor modules

PIXEL (Sensor and Readout, bump bonded)

Pixel size($\Phi \times z$) 50 µm x 425 µm Sensor Thickness 200µm $\Delta r \Phi = 1.28$ cm, $\Delta z = 1.36$ cm (Active area) 256 x 32 = 8192 channel / sensor 4 chip / sensor 4 sensor / stave

Total 4M Pixel

Readout by ALICE_LHCB1 chip

- Amp + Discriminator / channel
- •Bump bonded to each pixel
- •Running 10MHz clock (RHIC 106nsec)
- •Digital buffer for each channel > 4μ sec depth
- •Trigger capability > FAST OR logic for each crossing
- •4 event buffer after L1 trigger

Reaout overview

Readout scheme

chips.

- Monitoring supply, bias voltage and temperature on the detector.
- GOL : Transmit data with 1.6 Gbps

Bus structure

Procedure 3

3. Align each sensor module

Alignment of FullLadder#1

Encapsulation of wire

Side view of bonding wire

- •Wire has intermittent current due to readout synchronized the level 1 trigger.
- •Wire vibrates in magnetic field and may break

Installation and Peripheral

Layer O (PIXEL)

Completed and installed on 2011.12

VTX System

- To remove power dissipation 1560W/VTX, need to cool down pixel/strip detectors.
- To avoid detector destruction by heating, need safety interlock system
 - Interlock trips off power supply by temperature and flow of coolant.

Operation and Physics result

Pixel ladder as of 2011 January 15

VTX in Run 2011: Au+Au at 200 GeV

Electron

Pixel at PHENIX VTX completed

- Since 2011.12, Operation started.
- We archived

✓ Large acceptance → $|\eta| < 1.2, \Delta \phi \sim 2\pi$ ✓ Primary vertex resolution(DCA) → $\sigma \sim 77 \mu m$ ✓ b->e and c->e separation

 Issues: Damage to wires of pixel detectors during 1st run

Issue and repair work

Large temperature excursion due to the cooling interlock broke wires.

- Wire breaks at neck. -> not problem on wire bonding, problems on extra tensions
- 5-10deg -> -5deg for a few minibus, by turning off power ~ $1W/cm^2$, but running cooling system
- Expansion coefficient Encapusulant ~ 300ppm/deg (Sylgard 184 and 186) Other material (Myler, Si, Al, Cu Carbon) 20~30ppm/deg 20

Reapir

- 1. Removing encapulant
- 2. Clean up pad
- But fear to damage pad
- Decide wire on bond mark.

- After re-wire bonding, pull tests were performed.
- Always neck breaks with 6-8g tension.

Actions and Repairing work

- Fix interlock system, minimize unnecessary LV off.
- Operate 15-20deg, to decrease thermal shock.
 No additional broken wire.
- Repair work
 - 1. Remove encapsulant
 - 2. Clean up bonding pad
 - 3. Re-wire bonding
 - 4. encapsulation
- Encapsulant
 - Available encapsulation material 300ppm/deg
 - Use soft material to minimize extra tension.
 - Penetration 65 (JIS K2207)
- Survive Heat shock test (0<->40deg 1min 50 times)

Summary

- We constructed Si Pixel detector for heavy ion collision experiments.
- It works and performs well for physics
 Vertex resolution 77μm.
- Some of pixel ladders were damaged in the first run. Repair work is underway

Backup

VTX parameters (in proposal)

Pixel detector Strip detector

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\frac{\text{dimensions}}{\text{dimensions}} \underbrace{\begin{array}{c c c c c c c c } & \Delta z & (cm) & 21.8 & 21.8 & 31.8 & 38.2 \\ \hline & \Delta z & (cm) & 21.8 & 21.8 & 31.8 & 38.2 \\ \hline & \text{Area} & (cm^2) & 280 & 560 & 1960 & 340 \\ \hline & \text{Channel count} & & \text{Sensor size} & 1.28 \times 1.36 & 3.43 \times 6.36 & \\ & \text{R} \times z & (cm^2) & (256 \times 32 \text{ pixels}) & (384 \times 2 \text{ strips}) \\ \hline & \text{Channel size} & 50 \times 425 \ \mu\text{m}^2 & 80 \ \mu\text{m} \times 3 \ cm & (effective 80 \times 1000) \\ \hline \end{array}$	VTX	Layer R1 R2		R3	R4	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		R (cm)	2.5	5	10	14
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		∆z (cm)	21.8 21.		31.8	38.2
$\begin{array}{ c c c c c } \hline R \times z \ (cm^2) & (256 \times 32 \ pixels) & (384 \times 2 \ strips) \\ \hline Channel \ size & 50 \times 425 \ \mu m^2 & 80 \ \mu m \times 3 \ cm \\ & (effective \ 80 \times 1000 \ cm) \\ \hline \end{array}$		Area (cm ²)	280 560		1960	3400
(effective 80 × 100	Channel count					
		Channel size	50 × 425 μm²		(effective 80 × 1000	
Sensors/ladder 4×4 56		Sensors/ladder	4 ×	: 4	5	6
Ladders 10 20 18 26		Ladders	10	20	18	26
Sensors 160 320 90 156		Sensors	160	320	90	156
Readout chips 160 320 1080 187.		Readout chips	160	320	1080	1872
Readout channels 1,310,720 2,621,440 138,240 239,6		Readout channels	1,310,720	2,621,440	138,240	239,616
RadiationSensor0.22%0.67 %	Radiation length (X/X0)	Sensor	0.22%		0.67 %	
		Readout	0.16%		0.64 %	
Bus 0.28%		Bus	0.28%			
Ladder & cooling 0.78% 0.78 %		Ladder & cooling	0.78%		0.78 %	
Total 1.44% 2.1 %		Total	1.44%		2.1 %	

_	 	- BEAM
S.		Pixel
		Strip

Layer	radius	Detector	Occupancy in Au+Au collision	
Layer 1	2.5 cm	Pixel	0.53 % 0.16%	
Layer 2	5.0 cm	Pixel		
Layer 3	10.0 cm	Strip	4.5 % (x-strip)	4.7 % (u-strip)
Layer 4	14.0 cm	Strip	2.5 % (x-strip)	2.7 % (u-strip)