LHCb VELO Upgrade

On behalf of the VELO Project

Outline

- Current detector overview
- Upgrade motivation
- VELO Upgrade plan
- Upgrade R&D
 - Sensors
 - ASIC
 - Cooling
 - Infrastructure
- Prototype evaluation
- Schedule
- Summary

The current VELO

Operates in vacuum

Separated from primary vacuum by RF foil with complex shape

Cooled by evaporative **CO**₂ system

Moves away every fill and

centers around the beam with self measured vertices

Why upgrade LHCb

- Currently LHCb design can cope with inst. Lumi. $L > 2L_{design}$
 - LHC still provides more than what we can handle:

- Current detector is limited due to 1 MHz readout.
- Higher Luminosities do not translate to higher yields many (hadronic) channels.
- The upgrade is planned as a major Trigger/Readout upgrade:
 - From 1 to 40 MHz full readout → Every collision read out to a computing farm
 - Higher instantaneous Luminosity
 → Higher occupancies

VErtex LHCk

Main Challenges for the Upgrade: Operation@ 40 MHz & 2 x 10³³ cm⁻²s⁻¹

- Completely new front-end electronics and sensor
 - Fast Analogue front-end
 - Able to withstand radiation levels of \sim 370 MRad or 8 x 10¹⁵ n_{eq}/cm^2 (5 times bigger/year)
- Huge data rate in the front-end and back-end
 - Capable of dealing with huge data rate
- Completely new cooling interface
 - Thermal Runaway risk at inner most region
- Improve the excellent performance
 - Proper time resolution ~ 50 fs
 - IP resolution ~ 13 + 25/pT μm

Upgrade plan

- Keep the common infrastructure of the VELO:
 - Bi-phase CO, cooling
 - LV & HV power supply systems
 - Vacuum and Motion systems
- New components:
 - Detector modules
 - Readout ASICs
 - New design of lower material RF foil
 - Multi Gbps readout system

Design Considerations on the upgrade

- Intant Lumi 5 times higher:
 - much higher radiation damage.
 - Much larger bandwidth (up to 12 Gbps @ hottest pixel chip) and occupancies.
 - Needs fast robust, reliable, pattern recognition
- Material budget and distance to the collision point affect the IP resolution.
- Two main design options to consider: Strips or Pixels.

Strip Design

- similar to current detector (Rφ geometry)
 - 30 μm minimum pitch, 20 x 128 strips per sensor
 - keep occupancies < 0.6 % at 10³³cm⁻²s⁻¹
 - Keep capacitances low → higher lifetime
 - No pitch adapter (compared to now)
 - Sensitive area close to the edge
 - Active @ 7 mm from the beam
- Sensor prototypes (Hamamatsu) being tested
- Sensor hybrid to be developed
 - Cooling options shared with Pixel alternative.
- New ASIC chip under development:
 - on-chip common mode subtraction, clustering and zero suppression

Pixel design

- Will be built with VeloPix ASIC
 - Based on Timepix3 (TPX3) design ← successor of Timepix
 - Silicon Planar Sensors 55x55 μm pixel, 256² matrix
 - → Telescope built with this tech. already has very good results: < 2 µm Resolution at the DUT.
 - simultaneous measurement of time-over-threshold (ToT) and time-of-arrival (ToA) → ideal for time stamp and inter pixel positioning
 - Requirements: peaking time < 25 ns, timewalk < 25 ns @ 1ke⁻¹
 - hit rate up to 500 MHz (hottest chip @ L = 2 x 10^{33} cm⁻²s⁻¹)
 - Super pixels and data driven read-out.
- Many sensor options being investigated.
- (more details on the chip in M.v. Beuzekom Session 5)

13

LHCb

LOGIN

Pixel design

Will be built with Velopix ASIC

Based on Timepix₃ (TPX₃) design ← successor of Timepix

Pixel Module

A 'module' is made of 4 sensor tiles.

- active area ~100% (except small gaps)
- Closest pixel is at 7.5 mm from the beam center
- Each tile has 3 ASICs
- 12 tiles on each side of the substrate

2 modules make 1 station

26 stations in total

Connectors

Upgrade RF Foil

Requirements

- Vacuum tight (< 10⁻⁹ mbar l/s)
- Radiation hard
- Low Mass
- Good electrical conductivity
- Thermally stable and conductive

•Material and fabrication:

•Aluminium (AlMgMn): 200-350 μm thickness: •By 5-axis milling of a single homogeneous block

Upgrade RF Foil

Requirements

- Vacuum tight (< 10⁻⁹ mbar l/s)
- Radiation hard
- Low Mass
- Good electrical conductivity
- Thermally stable and conductive

•Material and fabrication:

•Aluminium (AlMgMn): 200-350 μm thickness:
•By 5-axis milling of a single homogeneous block

Upgrade RF Foil

Requirements

- Vacuum tight (< 10⁻⁹ mbar l/s)
- Radiation hard
- Low Mass
- Good electrical conductivity
- Thermally stable and conductive

•Material and fabrication:

Aluminium (AlMgMn): 200-350 μm thickness:
By 5-axis milling of a single homogeneous block

Data Rate

- Occupancy is "low" but the detector is fully read every 25 ns.
 - Strips read out ZS data for each FE chip.
 - Strip design compensates occupancy with shorter strips.
 - Pixels summarize information from a 4x4 super pixel and time stamp the hits → 30% reduction on the rate.
 - Intelligent column to readout data from hot to cold area
 - Huge data rate from the hottest parts.
 - 12 Gbps for inner most pixel chips
 - Hottest chip must cope with ~500 MHits/s.

- Back end electronics must cope with a huge amount of data:
 - TELL40 (upgrade of TELL1, current DAQ board) receives and builds events using FPGAs.
 - Has to wait for time stamped data from every chip.
 - All the information is assembled and passed on to computing farm, stripping down redundant data.
 - Further processing and full reconstruction in the trigger farm.

Particle occupancies

Kazu Akiba

PIXEL 2012

Pixels Vs Strips

	strips	pixels
# ASICS/half station	40	12
# half stations	42	52
# ASICS total	1680	624
Cluster size	1.6	2.2
# clusters / half station/ 25 ns.	52.6	25.8
# pixel(strips) hits / half station /25ns.	84.2	56.8
# bits / cluster	42.4	52.3
# bits / pixel(strip) hit	26.5	23.8
Hottest chip output rate	1.4 Gbit/s	12.2 Gbit/s
Coldest chip output rate	1.4 Gbit/s	1.5 Gbit/s
Data rate / half station	56 Gbit/s	54.3 Gbit/s
Total data rate	2352 Gbit/s	2823 Gbit/s

High and Uneven Radiation damage

- At 7 mm from beam we accumulate
 ~ 370 MRad or 8 x 10¹⁵ n_{eq}/cm² for 100
 fb⁻¹
- Irradiated areas require higher depletion voltage.
- Cooling must reach inner areas to avoid thermal runaway

Dose is highly non-uniform – could pose a challenge, particularly for large sensors

VE_{res} LHCb

Cooling options

- Plan to use radiation hard CO2 evaporative cooling
- The main studies lie on the substrate and delivery options:
- CVD diamond and/or Thermal Pyrolithic Graphite (TPG) Substrate
- Micro channel (promising, more on J. Buytaert's talk- session 7)

Cooling options

- Plan to use radiation hard CO2 evaporative cooling
- The main studies lie on the substrate and delivery options:
- CVD diamond and/or Thermal Pyrolithic Graphite (TPG) Substrate
- Micro channel (promising, more on J. Buytaert's talk- session 7)

- Studies focusing on
 - Small to no Guard Ring designs.
 - Lowest material budget → Thin Sensors
 - Heavily irradiated sensors.
- Radiation hard ASICs with 130 nm IBM tech: Medipix3
- Performance evaluated using a Timepix telescope itself in beam tests.

VE_{ms} LHCb

Stud

sm

lov

he

Radi

Perfin be

ipix3 e itself

Hit position on D07-W0160

Setup/Preparation

	2012	2013	2014	2015	2016	2017	2018
Sensor R&D							
Electronics R&D							
Module R&D)		<u> </u>			
Infrastructure R&D							
TDR		*					
Sensor Production							
Electronics Production							
Module Production							
Mechanics Production							
Assembly 9/3/2012						X	38
9/3/2012	NdZI	u AKIDa	PIXE	L 2012		VE	LHCD

Summary

- The VELO detector is a successful vertex detector at the LHC.
- We plan an upgrade of LHCb and the VELO in the long shutdown of 2017-18
- The VELO pixel and strip options are being pursued and developed.
- We are still selecting over different sensor options
- R&D is progressing well in the key aspects of the detector: RF Foil, Cooling, ASIC, Sensors.
- Prototypes are being built and tested checking for the performance at high radiation doses.

VERT LHCb

Back up

Upgrade plan

- Keep the common infrastructure of the VELO:
 - Bi-phase CO₂ cooling
 - LV & HV power supply systems
 - Vacuum and Motion systems
- New components:
 - Detector modules
 - Readout ASICs
 - New design of lower material RF foil
 - Multi Gbps readout system
- Main design concerns:
 - Enhance cooling to avoid thermal runaway
 - Huge data rate: zero suppression in the ASIC
 - Reduce material budget

VE_{IGE} LHCb