Development of Data-Acquisition Front Ends enabling High-bandwidth Data Handling for X-ray 2D Detectors: A Feasibility Study

Choji Saji*, Toru Ohata, Takaki Hatsui¹⁾, Togo Kudo¹⁾, Takashi Sugimoto, Ryotaro Tanaka, Mitsuhiro Yamaga (JASRI/SPring-8, ¹⁾RIKEN)

Introduction & Objective

 Output data of X-ray 2D detector' for synchrotron radiation and X-ray free-electron laser experiments should be large throughput because of larger number of pixel, higher dynamic range and frequent repetition for more detail information on sample.
 Data-Acquisition systems will be composed by various kinds of detectors and backend analysis/storage system.

Data-Acquisition Front End (DAQ-FE) system for future X-ray 2D detector needs to achieve High-bandwidth and support various input/output interfaces.

High-bandwidth:

- Some of our target detectors are for X-ray free-electron laser experiments in SACLA (SPring-8 Angstrom Compact X-ray free Laser).

- Throughput for single sensor will increase from ~0.5 Gbps to 20 Gbps in the future.

Support various interfaces:

DAQ-FE will be used for various experiments as follows,

Various detectors/sensors:

- SPring-8 facility has many beamlines and various detectors/sensors

Input/output IF

- 57 beamlines for synchrotron radiation experiments
 1 beamline for X-ray free-electron experiments
- Various scale of DAQ system:
- Network distributed system: VMEs, PCs, storages connected via network
 Standalone system: compact DAQ system installed all device into a computer

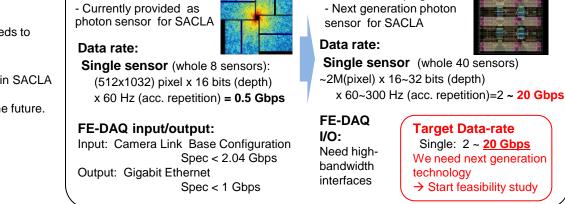
Camera Link (HS), Aurora,

DAQ-FI

Direct connection with PC

XAUI (10GbE) etc....

PCI express


Implementation

DAQ schematic view:

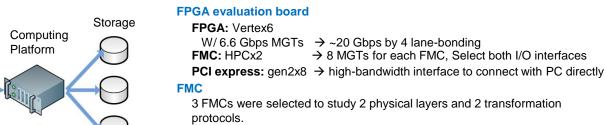
Sensor &

FPGA

readout

Hardware:

MPCCD (Multi Port CCD)


CCD type X-ray detector

High-bandwidth: FPGA w/ Multi-Gigabit-Transceiver (MGT) Support various IF: FPGA Mezzanine Card (FMC | ANSI standard VITA57)

Upgrade to next generation detector

SOPHIAS (Silicon On Insulator)

- Under developing

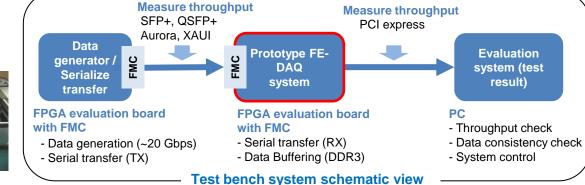
	FMC	Physical layer	Protocol
10	TD-BD-OPT4	SFP+ 4ch	Aurora
	FMS-28	QSFP+ 2ch	Aurora
	HTG-FMC-SFP	SFP+2ch (10G PHY)	XAUI

Feasibility Study:

With Multi-Gigabit-

Transceiver

Objective:


- Is FMC really effective to support some interfaces?
- Can we achieve ~20 Gbps high-bandwidth using FPGA and FMC?

Test bench system:

- Composed of FPGA evaluation board, FMC and PC

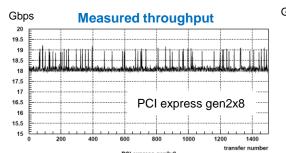
 Using a pair of evaluation board, we can study some physical layers and protocols by changing FMCs
 Developed FPGA logics for each

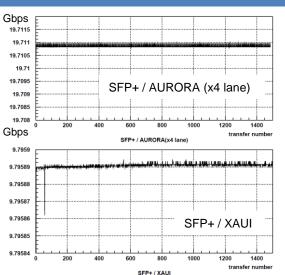
Results

FMCs

High-bandwidth:

- Successfully measured effective bandwidth of around 20 Gbps through SFP+/QSFP+ with AURORA. It shows FPGA, evaluation board and FMC potential is enough for required bandwidth.


Support various interface:


- We could successfully test some physical layers and protocols by changing FMCs. It found various interface of

Physical layer	Protocol	Throughput (Gbps)
SFP+	Aurora (x4 lane)	19.7
QSFP+	Aurora (x4 lane)	19.7
SFP+	XAUI	9.8
PCI express (gen2 x 8)	PCI express	18.1

FMC will support various type of experiments. **Summary:**

- We have found a combination of FPGA and FMC has enough potential for data acquisition of the next generation synchrotron radiation experiments. We will adopt them for the development of the actual DAQ system.

* saji@spring8.or.jp

International Workshop on Semiconductor Pixel Detectors for Particles and Imaging(PIXEL2012) September 3 -7@Inawashiro