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n+-in-p Benefits and Issues 
• Starting with “p-type” silicon, with n+-

readout , (n-in-p), has benefits: 
– Tolerance against radiation (bulk) damage 

• Depletion from the readout side always 
• Good signal even partially depleted, initially or 

heavily damaged towards the end of life 
– Collecting faster carrier, electrons 

• Larger signal, reduced charge trapping 
– Single-sided process  

• Cheaper than double-side process 
• More foundries and available capacity, world-wide 

– Easier handling/testing 
• due to more robust back-side than patterned 

– Wafer availability in 6-in. with higher 
resistivity 

• Specific requirements 
– N-side Isolation 

• against electron-layer in the silicon surface 
attracted to the “positive” charges in the Si-SiO2 
interface 

• p-stop or p-spray 
– Bias structure 

• if AC-coupling readout, e.g., strip sensors 
• if requesting testability in DC-coupling, e.g., pixel 

sensors 
– HV protection 

• between the front edge and the ASIC, in hybrid 
pixel modules 
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Novel n+-in-p Strip Sensors 
• Collaboration of ATLAS with 

Hamamatsu Photonics K.K. 
(HPK) 

• Silicon wafers 
– 6 in., p-type, FZ <100>, 320 

µm thick wafers 
– >3 kΩ cm wafers available  

industrially 

• Strip sensors 
– large area 

• 9.75x9.75 cm2 sensors 
– 4 segments 

• 2 axial, 2 stereo 
• 1280 strip each, 74.5 mm 

pitch 
– Miniature sensors 

• 1x1 cm2 for irradiation 
studies 

– Y. Unno, et. al., Nucl. Inst. 
Meth. A636 (2011) S24-S30 

– And the poster (ID=8) 
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Novel n+-in-p Pixel Sensors 
• n-in-p 6-in. wafer process in HPK 

– ATLAS FE-I3  and FE-I4 pixel sensors 
– Isolation structures 

• p-stop (common, individual) or p-spray 
– Biasing structures 

• Punth-thru dot at 4-corner (PTLA) or PolySi resister 
• “Bias rail” is a metal over insulator, no implant 

underneath.  
• No electrode in the silicon, other than the bias “dot” 

– Y. Unno et al., Nucl. Instr. Meth. A650 (2011) 
129–135 
 
 

• Thinned sensors 
– Finishing 320 µm wafer process first 
– Thinning the wafers to 150 µm 
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Pixel modules - Bumpbonding 
• Latest achievement 

– Lead-free bumps (SnAg) 
– 4 cm x 4 cm pixel sensor 
– 4x FE-I4 (2 cm x 2 cm) readout ASIC’s 
– 80 col.*336 row*4 chips =1M bumps 
– A sample in the HPK display table 
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The goals of R&D 
• Application 

– For the very high radiation environment, e.g., 
– High-Luminosity LHC which aims to collect data of 3,000 fb-1 

• Presently running LHC goal is 300 fb-1 

• Fluences of hadronic particles in HL-LHC 
– Pixels: ~2x1016 1-MeV neutron-equivalent (neq)/cm2 

– Strips: ~1x1015 neq/cm2 

• Understanding of the radiation effect, specially in the surface, 
after the studies of irradiated sample: 
– Surface resistance – Interstrip resistance 
– Punch-thru onset voltage – PTP structures 
– Effect of the surface potential – Bias rail, Bias-PTP gate 
– Potential of the p-stop 
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Interstrip Resistance 

• Interstrip resistance  
– decreases with fluence 
– increases with bias voltage 
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No gate 

PTP Onset Voltage – after irradiation 
• Onset voltage 

– Increases with 
fluence 
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http://dx.doi.org/10.1016/j.nima.2012.05.071 

http://dx.doi.org/10.1016/j.nima.2012.05.071
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Efficiency 

Bias Rail Effect – after  irradiation 

• Beamtests with MIP particles 
• Thin (150 µm) FE-I4 pixel sensors 
• Irradiation (2x1015 neq/cm2) 

– Successful operation up to 1000 V 

• Reduction of efficiency specially 
underneath the bias rail 
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Insensitive area - after Irradiation 

• Underneath the gate (metal) 
seems insensitive after irradiation 
– 20 µm width 
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Sensor Edge – Field Width 

• Field width 
– Area with no implantation 

• Required field width  
– decreases as fluence increased 

• Hot electron images confirm that 
– the highest electric field is  
– in the bias ring (n+ implant) 
– not in the edge ring (p+ implant) 
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• Wider the pitch, larger the potential 

• Potential decreases and saturates as fluence increase 
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P-stop Potential - TCAD 

• TCAD model 
– Thickness 150 µm, Bias voltage = 200 V 
– Radiation damage in bulk - Bulk resistivity is reduced by increasing the 

acceptor states, Neff ~ 1.4 x 1012/cm3, full depletion voltage of ~1 kV at 320 µm. 
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P-stop Potential - TCAD 

• Negative charge-up 
– does not explain “p-stop potential”. 
– explains “PTP onset voltage”, hot 

spots at the bias ring. 

• Positive charge-up 
– explains “decrease of p-stop 

potential”, but 
– does not explain “PTP onset 

voltage increase” nor the highest 
field at the bias ring side. 
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Interface charges 

• Fixed oxide charge (Qt) – known to be “+” 

• Interface trapped charge (Qit) – can be “+” or “-” 
– depending on the conditions 
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Our explanation, backed with TCAD 
• After irradiation, 

– Primary factor is the increase of “+” charges, e.g., in the 
fixed oxide charge 

– The evidences suggest that there is a secondary factor of 
increase of “-” charges in the “interface trapped charge”. 

– This may explain all observations. 
 

• An example of TCAD… 
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… failed to converge, though. 



Summary 
• Novel n+-in-p silicon strip and pixel sensors have 

been fabricated at HPK successfully. 
– and lead-free bumpbonding as well, which makes one-stop 

fabrication of pixel detectors from the sensor to the 
module. 

– Issues especially associated with the n+-in-p sensors were 
addressed. 

• Isolation structures that are robust against the bias voltage up to 
1000 V. 

• We have accumulated a number of evidences on the 
surface damage, after irradiation, that we explain, 
backed by TCAD simulation, 
– (1) Primary factor is “+” charge-up of, e.g., Fixed oxide 

charge, and  
– (2) Secondary factor is “-” charge-up of “interface trapped 

charge”. 
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Backup slides 
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P-stop Potential - TCAD 

• Silicon wafer 
– 320 µm, 3 kΩ cm (=4.7x1012 cm-3) 

• Condition: Non-irradiated  
• Ratio of p-stop potential-to-bias voltage seems stable for the change of the bulk resistivity 
• Y. Unno et al., Nucl. Instr. Meth. A636 (2011) S118–S124 

200 V bias 

75 µm ptich 

19 Y.Unno, PIXEL2012 at Inawashiro, 2012/9/6 


