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n*-in-p Benefits and Issues

Starting with “p-type” silicon, with n*- .
readout, (n-in-p), has benefits: /Edge Ring

— Tolerance against radiation (bulk) damage GBu_ardRRlng SI0;
» Depletion from the readout side always y_ blas Rin
* Good signal even partially depleted, initially or

heavily damaged towards the end of life

— Collecting faster carrier, electrons
* Larger signal, reduced charge trapping

— Single-sided process
* Cheaper than double-side process
* More foundries and available capacity, world-wide

— Easier handling/testing All
* due to more robust back-side than patterned
— Wafer availability in 6-in. with higher
reS|st|V|ty W -+ implant
Specn‘l; requwe_ments HV() B o+ implant
— N-side Isolation
* against electron-layer in the silicon surface depleted
attracted to the “positive” charges in the Si-SiO, Slely il
interface
* p-stop or p-spray depleted
— Bias structure
* if AC-coupling readout, e.g., strip sensors /4 AN ; SnAg
* if requesting testability in DC-coupling, e.g., pixel HV/(? B GNDERF rontend ASIC 35 bumps
sensors (?)
_ HV protection - - -!- - -!- I -!- - - -
* between the front edge and the ASIC, in hybrid GND Support structure

pixel modules
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Novel n*-in-p Strip Sensors

Collaboration of ATLAS with
Hamamatsu Photonics K.K.
(HPK)

Silicon wafers
— 6in., p-type, FZ<100>, 320
um thick wafers
— >3 kQ cm wafers available
industrially

Strip sensors
— large area
* 9.75x9.75 cm? sensors

— 4 segments
e 2 axial, 2 stereo
* 1280 strip each, 74.5 mm
pitch
— Miniature sensors
* 1x1 cm? for irradiation
studies
— Y. Unno, et. al., Nucl. Inst.
Meth. A636 (2011) S24-S30

— And the poster (ID=8)
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Novel n*-in-p Pixel Sensors

* n-in-p 6-in. wafer process in HPK FE-I3 (~1cm L) FE-14 (~2cm L)
— ATLAS FE-I3 and FE-14 pixel sensors

— Isolation structures
e p-stop (common, individual) or p-spray FE-13 1-chip pixels
— Biasing structures
* Punth-thru dot at 4-corner (PTLA) or PolySi resister
* “Bias rail” is a metal over insulator, no implant
underneath.
* No electrode in the silicon, other than the bias “dot”

— Y. Unno et al., Nucl. Instr. Meth. A650 (2011) ®
129-135 ‘ FE-14 2-chip pixels

FE-14 pseudo 4-chip pixels

FE-14 1-chip pixels
PTLA

'y ; ,

Biasing Cén "

FE-13 4-chip pixels

Scheme
HPK n-in-p 6-in. wafer
\ _ Thinned sensors
PolySi — Finishing 320 um wafer process first

— Thinning the wafers to 150 um
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Pixel modules - Bumpbonding

Latest achievement
— Lead-free bumps (SnAg)
— 4.cm x4 cm pixel sensor
— 4x FE-14 (2 cm x 2 cm) readout ASIC’s
— 80 col.*336 row*4 chips =1M bumps
— A sample in the HPK display table

GOOD Bump short Bump missing
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Most of bumps( >about 99.8%) look “GOOD”.
But, some of bumps have short or missing.
We are trying to improve the vyield.
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The goals of R&D

Application
— For the very high radiation environment, e.g.,

— High-Luminosity LHC which aims to collect data of 3,000 fb-?
* Presently running LHC goal is 300 fb!

Fluences of hadronic particles in HL-LHC

— Pixels: ~2x10%® 1-MeV neutron-equivalent (neg)/cm?
— Strips: ~1x10%> neq/cm?

Understanding of the radiation effect, specially in the surface,

after the studies of irradiated sample:
— Surface resistance — Interstrip resistance
— Punch-thru onset voltage — PTP structures
— Effect of the surface potential — Bias rail, Bias-PTP gate
— Potential of the p-stop



Interstrip Resistance
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* Interstrip resistance
— decreases with fluence
— increases with bias voltage
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PTP Onset Voltage — after irradiation

10
o * Onset voltage
Non-irradiated — Increases with
! fluence
f-,-;,- | No gate \
o A o
1 % | B Full gate - Irradiated
g = K S
B o1 | A= 1A ¥ *
fj Full gate
-
/m
Strip o rﬁ
0.01
-150 -100 -50 0
PTP - Insurance for o1 votage V.Y 1x1015
protecting integrated AC By
coupling capacitors from ~5 MA 1x10%4
beam splash 0.01 XLV
AV (Implant-Metal) <100 V '
-150 -100

http://dx.doi.org/10.1016/j.nima. 2015 05°67T " **" P voltage, V (v)



http://dx.doi.org/10.1016/j.nima.2012.05.071

Bias Rail Effect — after irradiation

Bias rall No bias rall
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(a) PolySi x p-stop (b) PolySi x p-stop, 2x101°

I st beamtest

2nd beamtest

SCC93~ 999.7+0.005% (NR)

SCC94  98.7+0.01% (NR)  ©99.6+0.01% (NR)
SCC95  999.7+0.01% (NR)  €95.6+0.02% (IR)
SCC96  994.2+0.02% (NR)  ©94.9+0.02% (IR)

N/A

Weighted averages and errors of: “(100, 125, 150V), (100, 200, 300 V),

€(800, 900, 1000 V)

http://dx.doi.org/10.1016/j.nima.2012.04.081

(c) PTLA X p-stop

Beamtests with MIP particles
Thin (150 um) FE-14 pixel sensors

Irradiation (2x10% neg/cm?)

—  Successful operation up to 1000 V
Reduction of efficiency specially
underneath the bias rail
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Insensitive area - after Irradiation

Bias ring
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Fig.9 Structure around the polysilicon bias resistor of the n-side.
The n*-implant strip ends at the DC-pad; no n*-implant strip was
designed under the bias resistor in this detector.
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New result from a

Fig. 10 The charge collection under the bias resistor where non™-

200 300
Position [uml

+

implant strip was fabricated has been measured by using a laser light
(1064 nm). The laser response was obtained for non-irradiated
(circle) and the irradiated (cross) detectors. The areas of the bias
resistance (square) and the DC-pad (diamond) are shown together.

Y. Unno et al., IEEE TNS 44 (1997) 736-742

beamtest (Poster ID=52)
1015 pm

995 um

 Underneath the gate (metal)
seems insensitive after irradiation

— 20

um width
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Sensor Edge — Field Width

300
w00 1x10** neg/cm?
B # p-bulk p-edge 320um FZ1
55 lg-bulk E-ed:e 150um FZ1 10uA at 2000 V
B -bulk p-edge 150um FZ3 o
E-bujk E—ed:e 200um -15 C
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=
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Fluence (1MeV-n,/cm?)
Figure b: Fluence dependence of field width hold up to 1000 V.
http://dx.doi.org/10.1016/j.nima.2012.05.071 ° Field width
AL — Area with no implantation
* Required field width
— decreases as fluence increased
x X - * Hot electron images confirm that
Field width = X + X' — the highest electric field is
P-Sub . . . .
" Total Edge Width — in the bias ring (n* implant)

— not in the edge ring (p* implant)

LUy, PIXEL2012 at |nawaShirO, 2012/9/6 11
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Potential of p-stop

160
500 V bias voltage —B73-100
140 BZ2-100
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* Wider the pitch, larger the potential
 Potential decreases and saturates as fluence increase
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P-stop Potential - TCAD

I/F -1ell/cm? I/F +1ell/cm? I/E +1e12/cm? [ ]
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TCAD model

— Thickness 150 pum, Bias voltage = 200 V
— Radiation damage in bulk - Bulk resistivity is reduced by increasing the
acceptor states, N ~ 1.4 x 10*?/cm3, full depletion voltage of ~1 kV at 320 um.
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P-stop Potential - TCAD

I/F charge -1ell/cm? I/F charge +1ell/cm? I/F charge +1el2/cm?

l] 0 output_disE><Oo

_Z' -

Positive charge-up
— explains “decrease of p-stop
potential”, but
— does not explain “PTP onset
20 0 2 voltage increase” nor the highest
(] field at the bias ring side.

vl

-100

* Negative charge-up
— does not explain “p-stop potential”.
— explains “PTP onset voltage”, hot
spots at the bias ring.



Interface charges 1
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Fixed oxide charge (Q,) — known to be “+”

Interface trapped charge (Q,) — can be “+” or “-”
— depending on the conditions

Y.Unno, PIXEL2012 at Inawashiro, 2012/9/6
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Our explanation, backed with TCAD

e Afterirradiation,

— Primary factor is the increase of “+” charges, e.g., in the
fixed oxide charge

— The evidences suggest that there is a secondary factor of
increase of “-” charges in the “interface trapped charge”.
— This may explain all observations.

* An example of TCAD...

output_disEX1

... failed to converge, though.

-10 4
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Summary

* Novel n*-in-p silicon strip and pixel sensors have

been fabricated at HPK successfully.

— and lead-free bumpbonding as well, which makes one-stop
fabrication of pixel detectors from the sensor to the
module.

— |Issues especially associated with the n*-in-p sensors were

addressed.
* |solation structures that are robust against the bias voltage up to
1000 V.

e We have accumulated a number of evidences on the
surface damage, after irradiation, that we explain,
backed by TCAD simulation,

— (1) Primary factor is “+” charge-up of, e.g., Fixed oxide
charge, and

— (2) Secondary factor is “-” charge-up of “interface trapped
charge”.
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P-stop Potential - TCAD
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Fig. 7. Electric potential Psi charted vertically through silicon in common p-stop
structures with p-stop widths of 6-45 pum at the centre between the n”-strips
(P6-P45), and at the n*-strip (P6 N-strip).

Fig. 6. Electric potential Psi near the silicon surface between n*-strips in common
p-stop structures with p-stop widths of 6-45pum (P6-P45), together with
references without p-stop and with interface trap charges of 1 = 10" cm 2 (NP)
and nil (NP Nil).

*  Silicon wafer
— 320 um, 3 kQ cm (=4.7x10%2 cm3)

e Condition: Non-irradiated

*  Ratio of p-stop potential-to-bias voltage seems stable for the change of the bulk resistivity
* Y.Unno et al., Nucl. Instr. Meth. A636 (2011) S118-S124
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