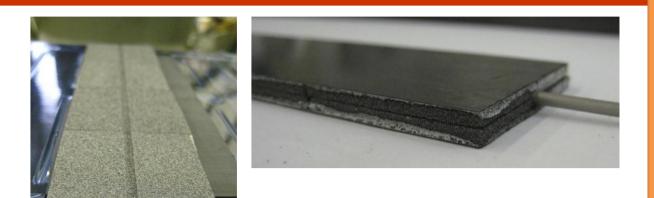


Low mass carbon based support structures for the HL-LHC ATLAS pixel forward disks

R. Bates^{*a}, C. Buttar^a, I. Bonad^a, F. McEwan^a, L. Cunningham^a, S. Canfer^b, C. Lockett^b, J. Pater^c, R. Thompson^c, T. Jones^d

a: SUPA school of Physics and Astronomy, University of Glasgow, Glasgow, UK
b: Advanced Materials Group, RAL, STFC, UK
c: School of Physics and Astronomy, The University of Manchester, UK
d: Department of Physics, The University of Liverpool, UK
* Contact e-mail: richard.bates@glasgow.ac.uk


Introduction

 Large Hadron Collider (LHC) at CERN luminosity will increase by an order of magnitude around 2020 to the high luminosity HL-LHC

Pixel mechanical test structure

Sandwich

- 120mm x 38mm CF(0.2)/foam (2x2.3)/CF(0.2) sandwich
- Allcomp foam (130ppi, 0.252g/cc)
- K13C2U/EX-1515 (50gsm / 40%RC)

- The ATLAS experiment will require a new tracker radiation damage and event density & rate
- This tracker will consist of

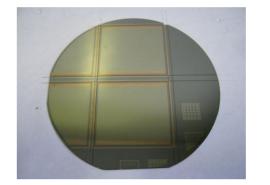
pixel and strip devices

both as barrel and endcap disks.

The new pixel detector

Smaller pixels -> to minimize occupancy & increase spatial resolution Extremely radiation hard silicon detectors.

New front-end electronics to cope with the higher data rates.


These devices will be supported by low mass thermalmechanical structures. Cooling Tube
2.275mm OD
Titanium

- 0/90°/0

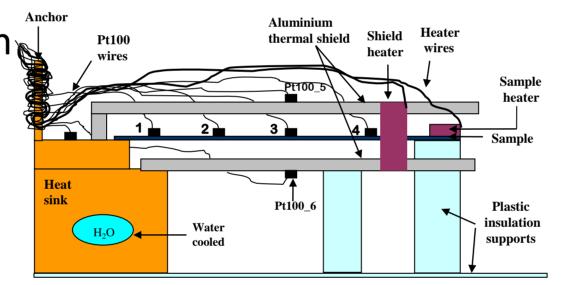
- Adhesive
 - Hysol 9396 (30% BN by wt) adhesive

Pixel dummy heaters

- 500um thick Silicon
- 1um Tungsten with Cu solderable strip
 - Thermal simulation verification
 - Disk loading

Test box / Cooling system

Enclosure at 20C flushed with N2
CO2 from gas bottle


Evaporation T = -33C
Measure with IR camera

Thermal measurement test apparatus

All measurements are steady state Systems are verified against copper and silicon Temperatures measured with 4 wire PT100s Heat from 4 wire electrical heaters

Through-thickness measurements for glues and thin films Sample between Cu rods Pressure and DC340 at interfaces Measured at RT

Thermal testing and Simulations

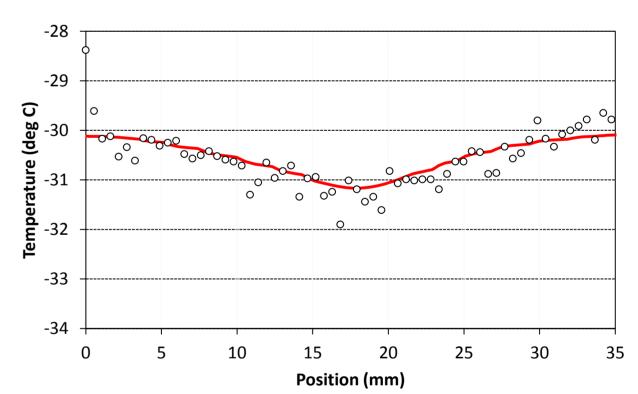
Cross-section of loaded cooling structure

- Solder bumps at 5.3% fill factor
- DC SE4445 100% coverage
- No glue between foam and pipe

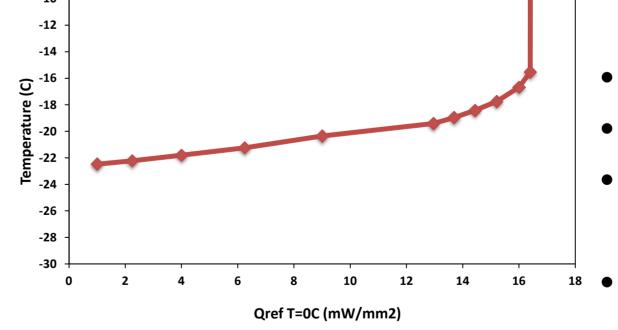
In-plane measurements for thin sheets Sample surrounded by radiation shield Under vacuum (10⁻⁵ mbar) Measurements from -30C to +20C

Thermal conductivity results Foam & CFRP

Allcomp foam			CFRP	K13D2U	K13C2U
Direction	Conductivity (W/mK)			0-90-0	0-90-0
	ρ=0.22g/cm ³	ρ=0.36g/cm ³		100 gsm	100 gsm
Х	34	74	Thickness (um)	230	254
Y	38	62	0 Dradiatad	210	220 ± 7
Ζ	34	64	0 - Predicted	318	229 ± 7
ff in the second second second			0 - measured	294 ± 20	285 ± 12
			90 - predicted	159	114 ± 6
			90 - measured	144 ± 20	
			Through thickness	1.20 & 0.96	1.3 & 1.1


K13D2U kf = 800 W/mK: K13C2U kf = 620 W/mK. Density = 2.19 gcm⁻³

Conductivity of BN filled Hysol 9396 epoxy

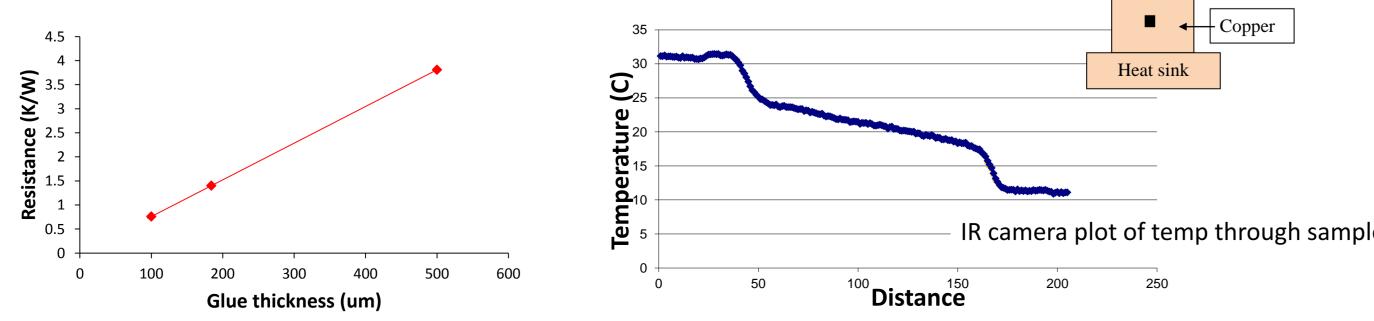

Test object simulated and measured in dry air

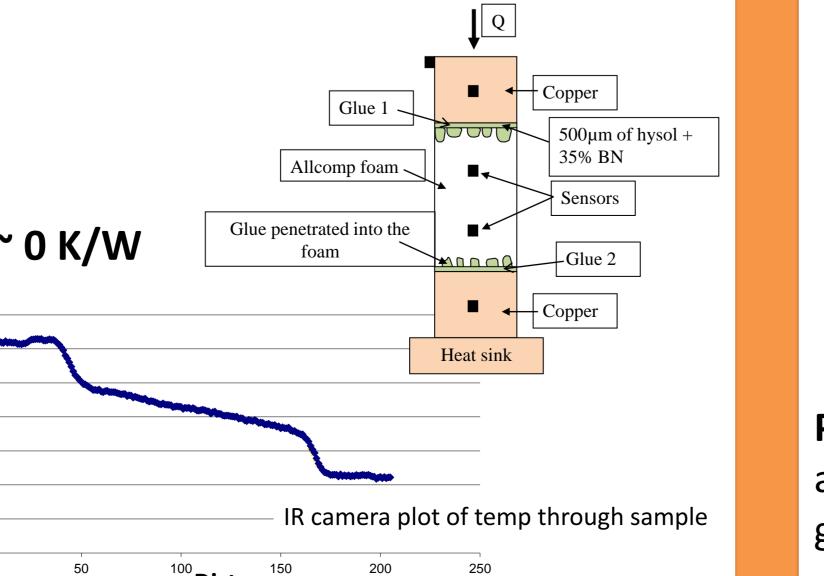
Allcomp Foam (2.3 mm

- Input data from measurements
- No glue between foam and pipe
- HTC CO2 = $10k Wm^{-2}K^{-1}$
- HTC still air = 5 $Wm^{-2}K^{-1}$
- Good agreement with data

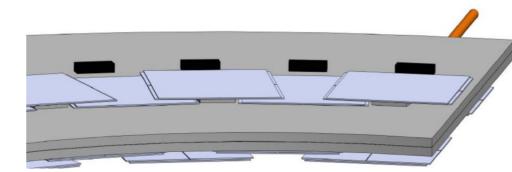
Thermal run-away on the test structure

ASIC power set to 1.56 W/chip (0.41 Wcm⁻²)
Nominal detector power ~ 3 mWmm⁻² at 0C
Exact power depends on sensor thickness and desired collected charge


¹⁶ • Factor of 4 in safety


Proposed design

35% BN by weight: k=1.4 W/mK
Degassing under vacuum makes little difference


• Little change after irradiation

Interface resistance foam to metal ~ 0 K/W

Disks with have an inner radius of 130 mm and outer radius of 315 mm 3 rings of quad(hex) modules required. Services for middle ring will be a challenge

Zoom showing space around modules

Disk 4 Mixed module sizes (Hex, quad, quad)

Phi overlap on modulesZoom showing space arouall disks on in ring to be placed on the same sidegives simpler tape design

- Lower contact area to high modules => Detailed FEA to take place

Pixel 2012: International Workshop on Semiconductor Pixel Detectors for Particles and Imaging, September 2012, Japan