

CdTe Pixel Detector Development for Synchrotron Radiation Experiments

<u>T. Hirono¹</u>, H. Toyokawa¹, M. Kawase¹, S. Wu¹,
 Y. Furukawa¹, T. Ohata¹,
 H. Ikeda², G. Sato², S. Watanabe², T. Takahashi²
 (¹JASRI/Spring-8, ²ISAS/JAXA)

Outline

Introduction

SPring. 8

- Requirements for CdTe detector
- Design and fabrication of 3rd prototype, SP8-02B
- Performances of SP8-02B
 - Bumping check
 - ENC
 - Stability of detection efficiency
- Summary and future plan

- SPring-8 is a synchrotron radiation (SR) facility with an 8GeV storage ring.
- ⇒ Experiments which require high energy X-ray (-100keV) belong to the most important experiments in SPring-8.
- **Target experiments:**

SPring. 8

High energy X-ray diffraction from 30 to 120 keV

High energy resonant X-ray inelastic scattering around 20 keV

White X-ray beam diffraction

Detector that is suitable for SPring-8 is

A photon-counting large-area hybrid pixel detector, like PILATUS. The detector should have:

High sensitivity in high energy X-ray region (15 - 100keV)

⇒CdTe sensor

SPring. 8

Function to cut high energy. This is important in...

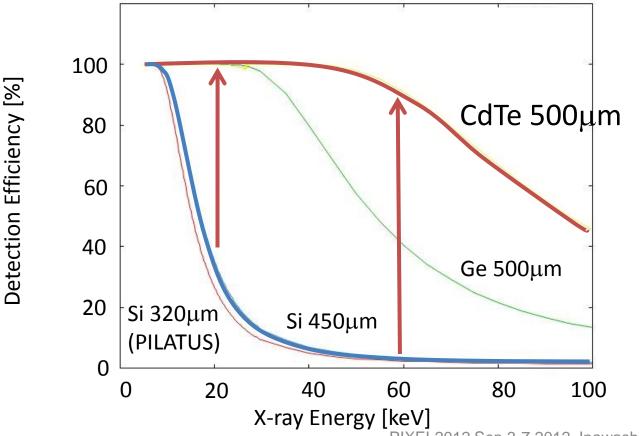
High energy X-ray diffraction... because:

X-ray beam from monochromator contains high harmonic order X-ray

High energy resonant X-ray inelastic scattering:

Cosmic ray is comparable to X-ray signal

White X-ray beam diffraction:


Limiting energy range ease the analysis

⇒Readout with a window-type discriminator

Detection Efficiency of Sensors

SPring. 8

CdTe has almost 100% detection efficiency up to 40keV, more than 50% at 60-100 keV where Si has only 1.5%

PIXEL2012 Sep 3-7 2012, Inawashiro, T. Hirono JASRI/SPring-8

Detector that is suitable for SPring-8 is

SPring. 8

- A photon-counting large-area hybrid pixel detector, like PILATUS. The detector should have:
- □ High sensitivity in high energy X-ray region (15 100keV) ⇒CdTe sensor
- Function to cut high energy. This is important in...

■ High energy X-ray diffraction... because:

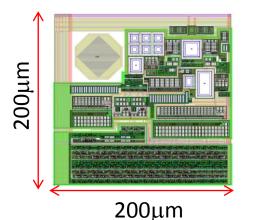
X-ray beam from monochromator contains high harmonic order X-ray

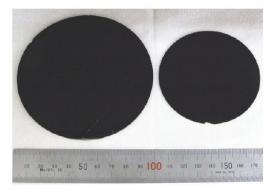
High energy resonant X-ray inelastic scattering:

Cosmic ray is comparable to X-ray signal

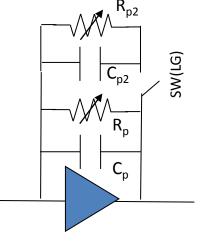
White X-ray beam diffraction:

Limiting energy range ease the analysis

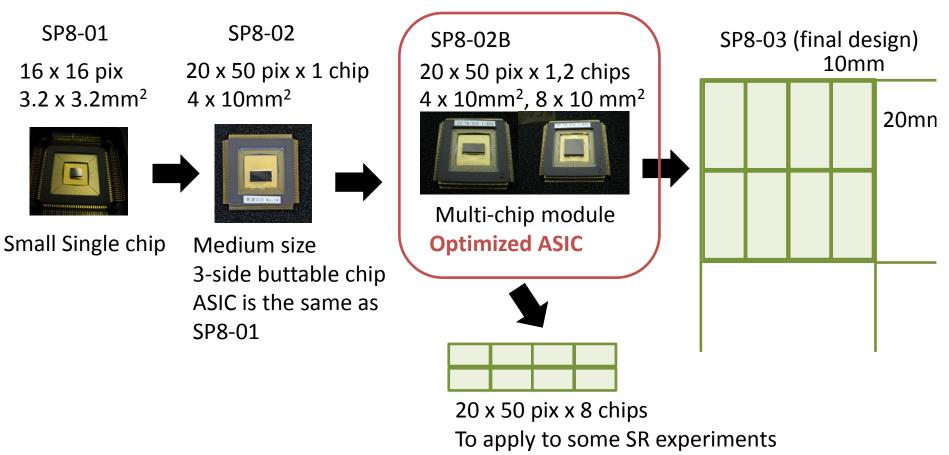

⇒Readout with a window-type discriminator


PIXEL2012 Sep 3-7 2012, Inawashiro, T. Hirono JASRI/SPring-8

Design specification for CdTe detector in SPring-8

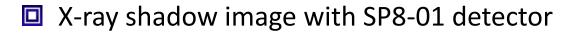

- Pixel size : 200 μm x 200 μm
- Size of module: 40 mm x 40 mm (10 mm x 40 mm)
- Energy range: 15- 40 keV, 30 100 keV with a gain switch
- Maximum counting rate : 10⁷ count/sec
- Window-type discriminator
- Noise count : < 1 count/hr/mm²
- High stability

SPring. 8

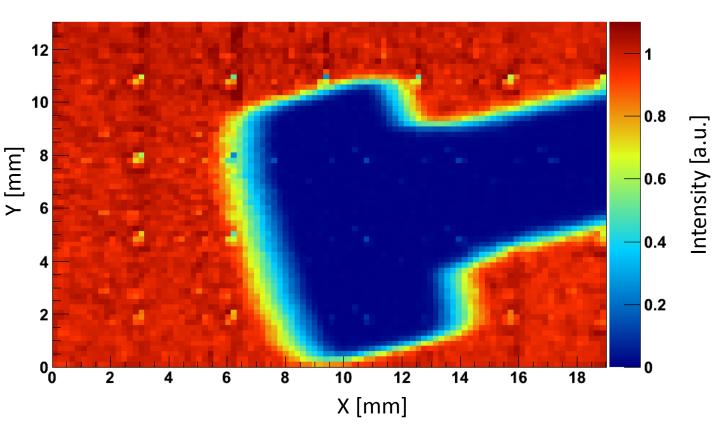


Steps to realize a large area imaging detector

that do not require large detection area


Requirements of SP8-02B

SP8-02B was developed to meet the design specifications that the former prototypes could not achieve.


The former prototypes achieved..

- Pixel size : 200 μm x 200 μm
- Size of module: 40 mm x 40 mm (10 mm x 40 mm)
- Energy range: 15-40 keV, 30 100 keV with a gain switch
- Maximum counting rate : 10⁷ count/sec
- Window-type discriminator
- □ Noise count : < 1 count/hr/mm²
- High stability

Pixel Size

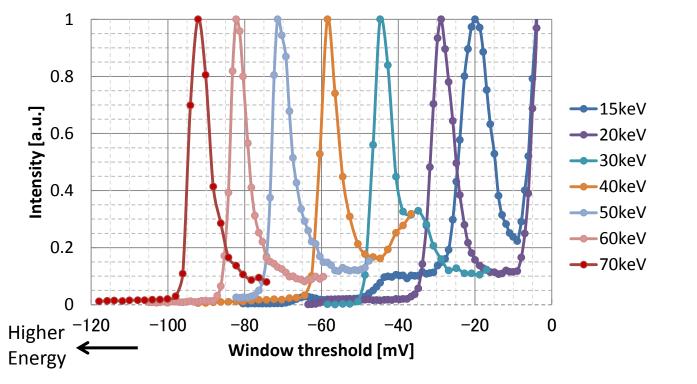
SPring. 8

Pt/CdTe/Al-pixel Gain : High Gain HV: -300V Exposure time : 10s Energy: 32KeV Combined image with 4 x 6 positions

SP8-01(pixel size of 200 x 200 um²) worked as an imaging detector

Requirements of SP8-02B

SP8-02B was developed to meet the design specifications that the former prototypes could not achieve.


The former prototypes achieved..

- 🔲 Pixel size : 200 μm x 200 μm 🕐
- Window-type discriminator
- Energy range : 15- 40 keV, 30 100 keV
- Size of module: 40 mm x 40 mm (10 mm x 40 mm)
- Maximum counting rate : 10⁷ count/sec
- □ Noise count : < 1 count/hr/mm²
- High stability

Window Discriminator

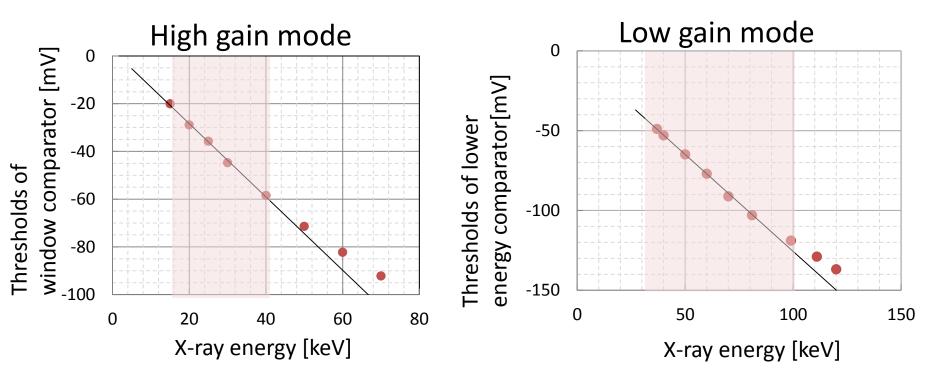
Threshold scan of window-type discriminator with SP8-01 detector

Monochromatic X-ray beams of various energies were irradiated to the SP8-01 detector.

SPring. 8

Pt/CdTe/Al-pixel Gain : Hig Gain HV: -300V Exposure time : 1s Window width :5mV (3.2keV) Beam intensity : attenuated to less than 10⁵ photons/pixel/sec

Intensity was normalized at peak.


The window-type discriminator of SP8-01 worked fine

Energy Range

Energy linearity in 15 - 100 keV with SP8-01

SPring. 8

The readout has 2 gain modes, 15-40 keV and 30-100keV

SP8-01 had the energy linearity of > 95% in range of 15 - 100 keV.

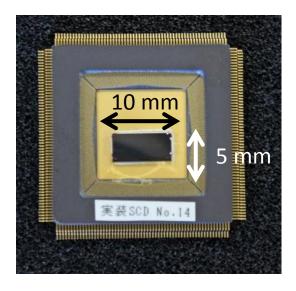
Requirements of SP8-02B

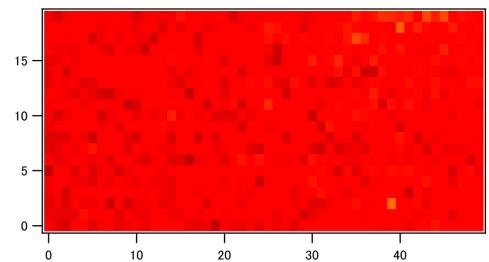
SP8-02B was developed to meet the design specifications that the former prototypes could not achieve.

The former prototypes achieved..

- 🖸 Pixel size : 200 μm x 200 μm 🙄
- Window-type discriminator
- Energy range : 15- 40 keV, 30 100 keV 🙂
- Size of module: 40 x 40 mm (10 x 40 mm)
- Maximum counting rate : 10⁷ count/sec
- Noise count : < 1 count/hr/mm²
- High stability

Detector Size


Bonding of SP8-02


SPring. 8

CdTe sensor were bumped to ASIC by In/Au bumping

SP8-02 (size of 10 mm x 5 mm) was fabricated without any defective pixel

Sensor: Pt/CdTe/pixelated Al Source: ²⁴¹Am (60 keV) Exp. time: 10 sec Readout: SP8-02 Bonding: Au/In stud bonding

Requirements of SP8-02B

SP8-02B was developed to meet the design specifications that the former prototypes could not achieve.

The former prototypes achieved..

- 回 Pixel size : 200 μm x 200 μm 🙄
- Window-type discriminator
- Energy range : 15- 40 keV, 30 100 keV 🙂
- Size of module: 5 x 10 mm (10 x 40 mm)

Requirements of SP8-02B

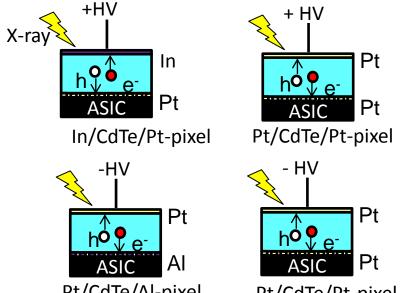
The specification for the 3rd prototype, SP8-02B, that were not achieved by the former prototypes:

- Size of module: 8 x 10 mm
- Maximum counting rate : 10⁷ counts/sec

 \Rightarrow Settling time of amplifier was > 1usec (SP8-02)

Low noise count : < 1 count/hr/mm</p>

⇒SP8-01 had 153 count/hr/mm at 20 keV


High Stability

- Good uniformity of threshold-level
 - ⇒Dispersion of threshold-level between pixels was very large (SP8-02)

Basic Properties of CdTe sensors

SPring. 8

	CdTe	Si	Ge
density (g/cm³)	5.85	2.33	5.33
atomic number	48, 52	14	32
band Egap energy (eV)	1.44	1.12	0.67
ε (eV)	4.43	3.62	2.96
resistivity (Ωcm)	10 ⁹	1400	3900
(μτ) _e (cm²/V)	~2 × 10 ⁻³	0.22	0.42
(μτ) _h (cm²/V)	~1 × 10 ⁻⁴	0.84	0.72

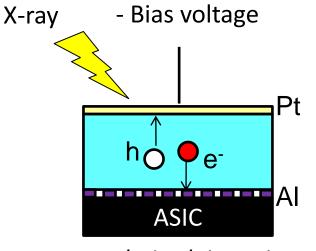
Pt/CdTe/Al-pixel

- Pt/CdTe/Pt-pixel
- CdTe has a large density and atomic number but a short lifetime compared to Si.
- Ideally, electrons, which have a larger mobility and a longer lifetime than holes in CdTe, have to be collected for high energy resolution. In particular the Schottky type detector functions as a diode device, which reduces the leakage current.

Basic Properties of CdTe sensors

SPring. 8

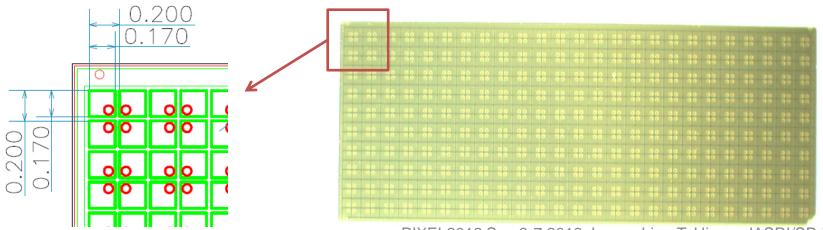
	CdTe	Si	Ge	+HV	+ HV
density (g/cm ³)	5.85	2.33	5.33	X-ray	P
atomic number	48, 52	14	32	ASIC Pt	h ^o ♥e⁻ D
band Egap energy (eV)	1.44	1.12	0.67	In/CdTe/Pt-pixel	ASIC Pt Pt/CdTe/Pt-pix
ε (eV)	4.43	3.62	2.96	-HV	- HV
resistivity (Ωcm)	10 ⁹	1400	3900	ho e- Pt	h ^o e - Pi
$(\mu\tau)_{e}$ (cm ² /V)	~2 × 10 ⁻³	0.22	0.42	ASIC	ASIC
(μτ) _h (cm²/V)	~1 × 10 ⁻⁴	0.84	0.72	Pt/CdTe/Al-pixel	Pt/CdTe/Pt-pix


- CdTe has a large density and atomic number but a short lifetime compared to Si.
- Ideally, electrons, which have a larger mobility and a longer lifetime than holes in CdTe, have to be collected for high energy resolution. In particular the Schottky type detector functions as a diode device, which reduces the leakage current.

Basic Properties of CdTe sensors

SPring. 8

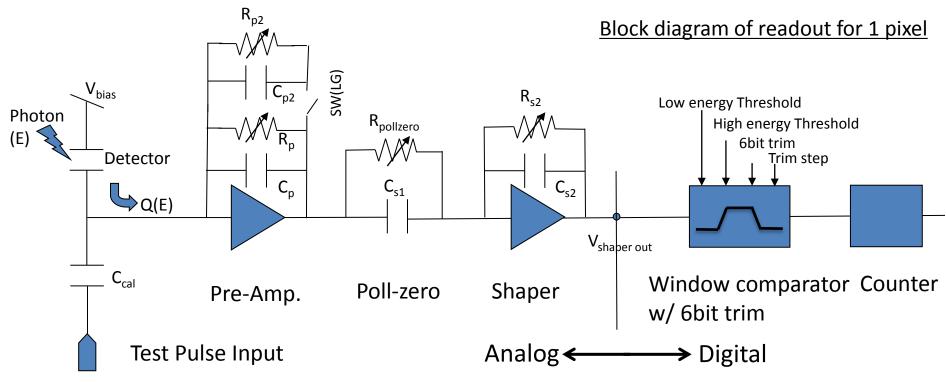
	CdTe	Si	Ge
density (g/cm ³)	5.85	2.33	5.33
atomic number	48, 52	14	32
band Egap energy (eV)	1.44	1.12	0.67
ε (eV)	4.43	3.62	2.96
resistivity (Ωcm)	10 ⁹	1400	3900
(μτ) _e (cm²/V)	~2 × 10 ⁻³	0.22	0.42
$(\mu\tau)_h$ (cm ² /V)	~1 × 10 ⁻⁴	0.84	0.72


- CdTe has a large density and atomic number but a short lifetime compared to Si.
- Ideally, electrons, which have a larger mobility and a longer lifetime than holes in CdTe, have to be collected for high energy resolution. In particular the Schottky type detector functions as a diode device, which reduces the leakage current.

SPring. 8

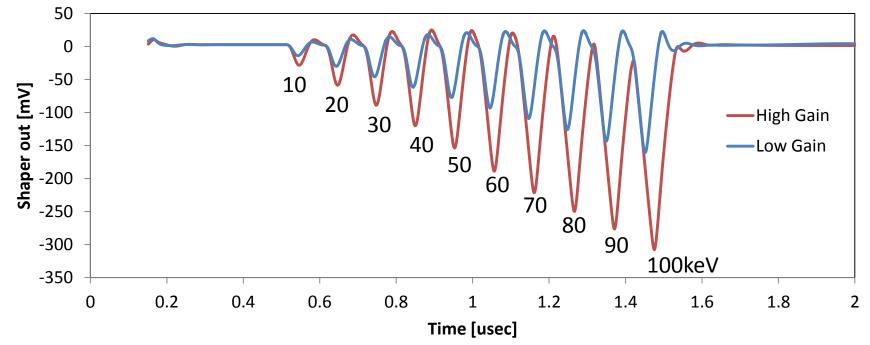
Pt/CdTe/Al-pixel

- In the previous work, we have measured that Pt/CdTe/pixelated-Al had larger time-stability and less leakage current.
- The electrodes were Al-Schotky on the pixelated side and Pt on the bulk side
- We have designed and fabricated sensors with the pixel size of 200 μm x 200 μm. The matrix is 20 x 50 pixels and 40 x 50 pixels. The process was performed by ACRORAD Co., Lt



PIXEL2012 Sep 3-7 2012, Inawashiro, T. Hirono JASRI/SPring-8

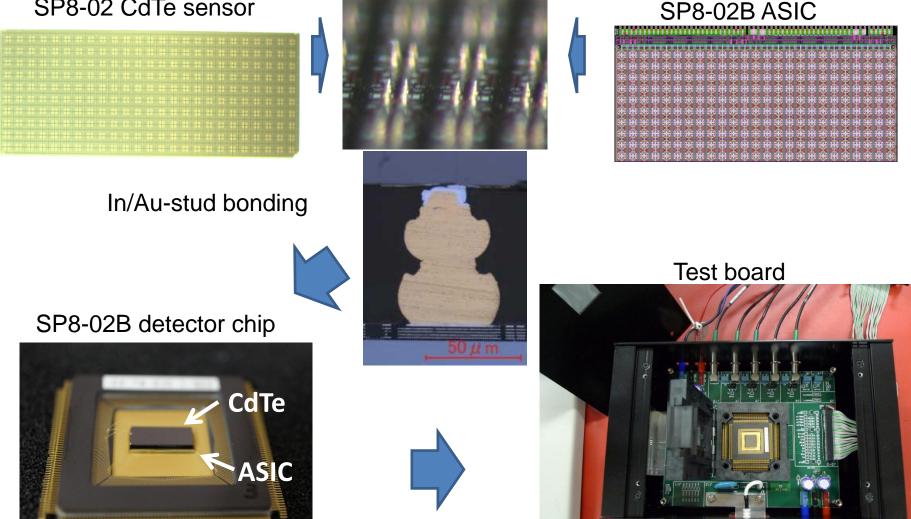
Design of SP8-02B (ASIC)


- To realize the specifications, the custom-designed ASIC for SP8-02B was developed
 - More power and ground lines
 - Increased gain of amplifiers
 - Unused switches were eliminated
- Possibility to adjust the step of offset trim
- Advanced poll-zero circuit

Design of SP8-02B (ASIC)

Result of a simulation of the analog amplifier

SPring. 8


ASIC was simulated with the input charge corresponding to 10 -100keV in 100nsec

 \Rightarrow All the parameters of the circuit were fixed to match the requirements.

Fabrication of SP8-02B

SP8-02 CdTe sensor

SPring. 8

SP8-02B Dual Chip Detector

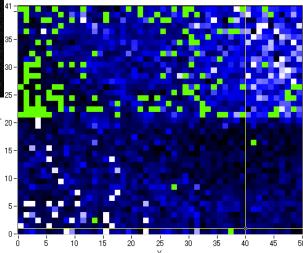
SPring. 8

Performances of SP8-02B

Bonding of SP8-02B

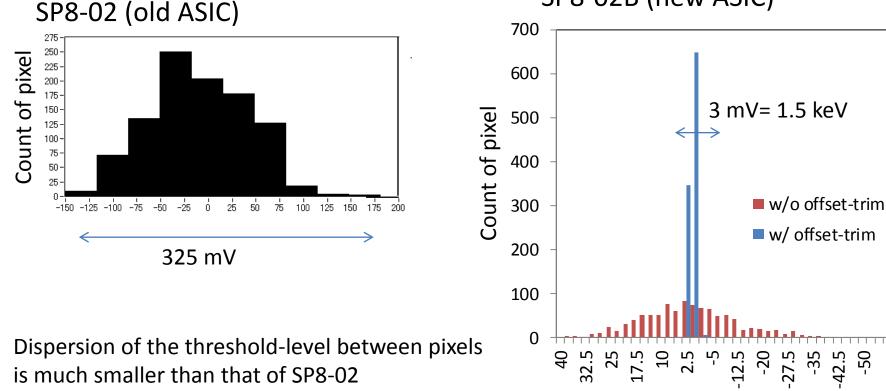
5 single-chips, 3 dual-chips were fabricated on Aug 22, 2012

A single chip detector and a dual chip detector were checked by ²⁴¹Am (60keV).


A pixel without any signals at the lower threshold of 30keV counted as a defective pixel

SP8-02B

Defective pixels


93% (143 defective pixels)

98% (19 defective pixels)

Performances of SP8-02B

Dispersion of the threshold-level

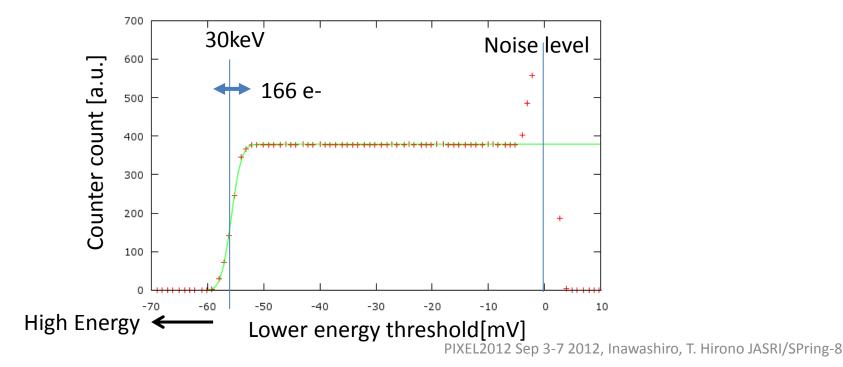
SPring. 8

The offset-trim unifies the pixel's threshold-level as small as 1.5 keV

SP8-02B (new ASIC)

80 mV= 40 keV

Performance of SP8-02B

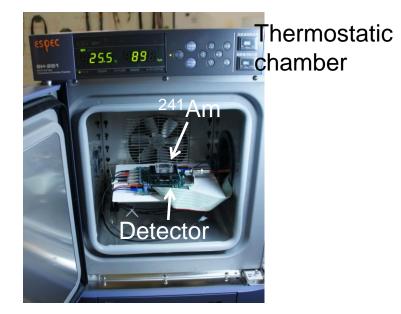

Equivalent Noise Charge with sensor

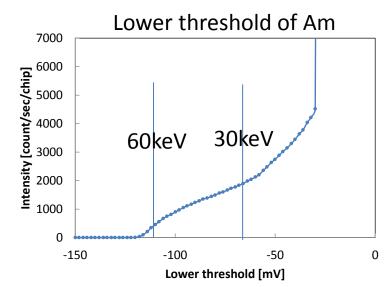
SPring. 8

- An s-curve of test pulse corresponds to 30keV by scanning the lower-energy threshold with higher-energy threshold open
- $\square The s-curve edge slop of test pulses \Rightarrow ENC = 166 e-$

cf SP8-01(old ASIC) ENC=360e-

□ Noise count \propto Exp(-1/ENC²) \Rightarrow < 0.1 count/hr/mm² can be expected

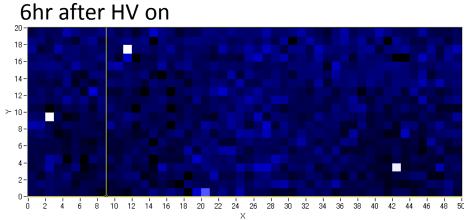



Stability Test

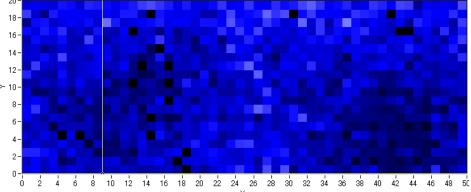
- Stability test was performed with a SP8-02B single chip irradiated by ²⁴¹Am
- Temperature was controlled between -20 ~ +26 degrees.

SPring. 8

- Humidity was downed to less than 30% at the room temperature and kept at this condition at the low temperature.
- Images with the lower-energy threshold at 30 keV were taken continually. The exposure time was 10 sec.


Stability Test

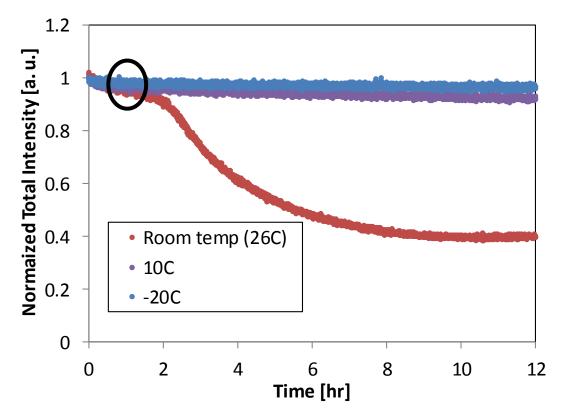
Stability of the single chip detector at the room temperature (26C)


Sensitivity degrades

SPring. 8

Noisy pixels emerge

1hr after HV on


20hr after HV on

Stability Test

Total counts of the SP8-02B single chip detector

- \diamond Degradation of the detector was 15%/hr at the room temperature (26°C)
- 0.9%/hr with coolant -20 °C

SPring. 8

Chip: SP8-02B HV: -300 V Exp: 10 sec Offset-trim: 60 keV Source: ²⁴¹Am Intensity was normalized at 0 hr

Summary

- CdTe detector have been developed for X-ray SR experiments.
- SP8-02B, 3nd prototype, was fabricated.
 - 200 x 200 um/pix, 50 x 20 pix and 50 x 40 pix/module
 - Custom-designed ASIC which is optimized from SP8-01/02
- Properties of SP8-02B were improved in comparison with SP8-01/02
 Dispersion of threshold: 80mV(40keV) w/o offset-trim 3mV(1.5keV) w/offset-trim
 - 🗖 ENC: 166 e-

SPring. 8

Time Stability: 15%/hr at the room temperature(26°C) 0.9%/hr at -20°C

Future Plan

- Trail runs for Au/In bonding are planned to decrease the defective pixels and increase uniformity of the sensitivity
- Properties of SP8-02B will be tested using SR of 15-100 keV
- We are fabricating 2 x 4 ASICs assembly with one sensor (SP8-02B OCM, 40 x 200 pixels) and then building multi-module detector with a cooling system (SP8-02B MMD, 4 x 2 module, 160 x 400 pixels).
- We plan to make a larger ASIC in SP8-03 (40mm x 40 mm).

SPring. 8

SP8-02 OCM (octal chip module)

Future Plan

- Trail runs for Au/In bonding are planned to decrease the defective pixels and increase uniformity of the sensitivity
- Properties of SP8-02B will be tested using SR of 15-100 keV
- We are fabricating 2 x 4 ASICs assembly with one sensor (SP8-02B OCM, 40 x 200 pixels) and then building multi-module detector with a cooling system (SP8-02E
- We plan to make a larger ASIC in SP8-03 (40mm x 40 mm).

SPring. 8

SP8-03 OCM (octal chip module)

Thank you for your attention

SPring. 8