Toward one Giga frames per second
- Evolution of In-Situ Storage Image Sensors -

PIXEL2012
“6th International Workshop on Semiconductor Pixel Detectors
for Particles and Imaging”
September 3 – 7, 2012; Inawashiro, Japan

ETOH, T. Goji & DAO, V. T. Son (Ritsumeikan University)
YAMADA, Tetsuo* (Tokyo Polytechnic University)
(*Speaker)
OUTLINE

1. Review of Ultra High Speed Image Sensors Using In-Situ CCD Memory
 • Advanced BSI Technologies
 • Example of High Speed Imaging

2. New Pixel Architecture toward 1G-fps
 • Design Concept
 • Pattern Layout and Driving Sequence

3. Consideration for Possibility of 1Gfps Imaging
 • Frame Rate Limitation
 • Simulation Results

4. Summary
In-pixel multi-collection gates proposed
Target: 1Gfps

In-pixel signal accumulation by coiled loop CCDs being designed

All-pixel parallel record by linear slanted CCDs achieved 16Mfps

In-situ CCD Storage Family
Necessity of Tetra-stratified BSI

1Mfps ISIS with FSI (Front Side Illumination) at 2001
ISIS: In-situ storage image sensor

Large light shield on CCD memories → Low fill factor of 15%

High sensitivity

BSI → Fill factor nearly 100% → 16Mfps at 2011

Front side memory →
- Intrusion of some incident light
- Migration of photoelectrons

Best solution

Tetra-stratified (pnpn) **Thick layer** BSI

Prevents

Migration of photoelectrons

Intrusion of some incident light
Starting Material for Tetra-stratified BSI “Double-epi Wafer”

Current recommended conditions:
- p-epi concentration: $\leq 10^{13} \text{ cm}^{-3}$
- Thickness: n-epi 11um; p-epi 39um; total: 50um
Cross-section of developed tetra-stratified BSI

Example of a potential contour

Incident Light
Examples of Ultra High Speed Imaging
Bullet shot by ISIS-V2 (500kfps, 86kpixels)

By courtesy of Prof. Kleine
Thunderbolt (experiment) shot by ISIS-V4 (1Mfps, 300kpixel, Color) *By courtesy of NHK
Laser chopper (6,000rpm) shot by ISIS-V16 (165kpixel BSI)
Ultimate High Speed Imaging

General imaging

(1) Charge collection process: It requires a short time.
(2) Charge transfer process: It requires a little short time.
(3) Signal readout process: It requires a long time.

By using analog memories directly connected to pixels, current high speed imaging has been done without the signal readout process. So it consists of (1) charge collection process and (2) charge transfer process.

If the imaging can be done only by the charge collection process, the ultimate high speed imaging will be achieved!!

Solution (Proposed)

New architecture of in-pixel multi-collection gates
Key technologies

(1) Numbers of collection electrodes are in a pixel.
(2) All of collection electrodes are sited on the central region in the pixel.

New Pixel Layout
An Example of Pixel Arrangement (Pixel Interleaved Array)
Principle of heightening an imaging speed by the in-pixel multi-collection gates.
Global Reset → Imaging Start

1'st Electrode Group
2'nd Electrode Group
Charge collection of 1st frame
Charge collection of 2′nd frame
Charge collection of 3’rd frame
Charge collection of 4-th frame
Charge collection of 5-th frame

Outward transfer 1 → Started
Charge collection of 6-th frame

Outward transfer 1

1'st Electrode Group

2'nd Electrode Group
Charge collection of 7-th frame
Charge collection of 8-th frame

Outward transfer 1 → Finished

1'st Electrode Group
2'nd Electrode Group
Charge collection of 9-th frame
Charge collection of 10-th frame

Outward transfer 2

1'st Electrode Group

2'nd Electrode Group
Charge collection of 11-th frame

1'nd Electrode Group

2'nd Electrode Group

Outward transfer 2
Charge collection of 12-th frame
Charge collection of 13-th frame

Outward transfer 3 → Started
Charge collection of 14-th frame

Outward transfer 3
The diagram illustrates the charge collection of the 15th frame and the outward transfer sequence between different electrode groups. The numbers 1 to 15 are labeled to indicate the positions within the system, with arrows showing the direction of outward transfer from the 1st to the 2nd electrode group. The highlighted areas and labeled sections emphasize the specific regions involved in the charge collection and transfer process.
Charge collection of 16-th frame

Outward transfer 3 → Finished
Charge collection of 17-th frame

Outward transfer 4 → Started
Charge collection of 18-th frame
Charge collection of 19-th frame
Charge collection of 20-th frame

Outward transfer 4 → Finished
Charge collection of 21-th frame

Outward transfer 5 → Started
Charge collection of 22-th frame
Charge collection of 23-th frame
Charge collection of 24-th frame

Outward transfer 5 → Finished
Charge collection of 25-th frame

Outward transfer 6 → Started
Charge collection of 26-th frame
Charge collection of 27-th frame
Charge collection of 28-th frame

Outward transfer 6 → Finished
Charge collection of 29-th frame
Charge collection of 30-th frame
Charge collection of 31-th frame
Charge collection of 32-th frame

Charge collection process is finished.

Next charge readout process is started.
Loop transfer 1

To output circuitry

1'st Electrode Group

2'nd Electrode Group
Loop transfer 1
→ Readout
1’st field signal

To output circuitry
Loop transfer 1
→ Readout
2’nd field signal
To output circuitry
Loop transfer 1
→ Readout
5-th field signal

To output circuitry
Loop transfer 1 is finished
→ Readout
8-th field signal
Outward Transfer 7 is started.

To output circuitry
Outward Transfer 7

To output circuitry
Outward Transfer 7 is finished.
Loop transfer 2 is started.
Loop transfer 2 is finished → Readout 16-th field signal
Outward Transfer 8

To output circuitry
Outward Transfer 8 is finished.
Loop transfer 3 is started.
Loop transfer 3 is finished
→ Readout
24-th field signal

To output circuitry
Outward Transfer 9 is finished.
Loop transfer 4 is started.
To output circuitry
Charge readout process is completed.

To output circuitry
Timing Chart of New Pixel Clocking
Charge Collection Mechanism

(a) One Dimensional Si-Bulk Structure, (b) Potential Profile
Frame Rate Limitation

Electron travel time t_c from back side to front side (charge collection site) through distance D is given by

$$t_c = \int_0^D \left(\frac{1}{\mu E(x)} \right) dx,$$ \hfill (1)

where $E(x)$ is an electric field in a Si bulk, μ is electron mobility in the bulk. If the electric field $E(x)$ is ideally constant as $E = V/D$,

$$t_c = \frac{D}{\mu E} = \frac{D^2}{\mu V},$$ \hfill (2)

where V is the potential difference between the back side and the front side. t_c will be a criterion of the minimum charge collection time which is roughly the minimum frame interval t_i.

Practical examples

Case 1. $\mu = 1350$ [cm2/Vsec], $D = 30$ [μm], $V = 10$ [V]

$\rightarrow t_i \approx 6.7 \times 10^{-10}$ (sec) corresponds 1.5 Gfps.

Case 2. $D = 50$ [μm], $V = 30$ [V]

$\rightarrow t_i \approx 6.2 \times 10^{-10}$ (sec) corresponds 1.6 Gfps.

Actually, the high speed limitation will be near 1Gfps.
Fig 1. Mask data: (a) Channel stop and p-well; (b) Poly-Si electrodes.

Voltage condition (with respect to p-well voltage):
- VIN1 = +10V
- VIN2 = VIN3 = ... = VIN8 = +2V
- VF1 = VF2 = VF31 = VF32 = -2V
- VCL = -10V
- VBACK = -25V
3-Dimensional Simulation Results for Charge Collection

(a) Potential contours beneath surface
(b) Potential contours in cross section

Electron Path
$\text{Electron Path } t_c = 0.90 \text{ nsec}$

Electron Path
$\text{Electron Path } t_c = 0.94 \text{ nsec}$
Summary

- New pixel architecture of the in-pixel multi-collection gates has been introduced to achieve 1Gfps imaging. The key technologies are followings.

(1) Plural collection electrodes are composed in a pixel. It makes possible that the frame rate is determined only by the charge collection time.

(2) All of collection electrodes are sited on the central region in the pixel. It can optimize potential profile to gather all photoelectrons quickly, and heightens the frame rate.

- Simulation results mean that the maximum frame rate can achieve theoretically to 1Gfps with using the proposed technology.

☆ I hope that the new image sensor opens out the new imaging world.☆
Thank you for your attention.
Principle of Heightening an Imaging Speed by The In-Pixel Multi-Gates
新提案画素の配列2
（正方配列と垂直転送CCD構成）
Next Generation!

Tetra-stratified BSI + Stacking

[Chip 1]
Honeycomb Multi-Collection Gates/Readouts +

[Chip 2 + more]
- Analogue Memory
- ADC+Dig. Memory
- ADC+Time Record, etc
図5 (a)断面構造略図と(b)動作原理図
Global Reset Mechanism
(a) One Dimensional Si-Bulk Structure, (b) Potential Profile
感度（入射光量）に関する課題

超高速イメージセンサが直面する本質的問題の一つとして感度（入射光量）がある。ここでは、波長550nmの光を例に議論する。

・フォトンのエネルギーをEとすれば、\(E = h \nu \)（\(h \)：プランク定数, \(\nu \)：波数）であるから、波長550nmのフォトンは、\(E = 3.61 \times 10^{-19} \) [J]のエネルギーをもつ。

・1ルックスは、標準比視感度（683 lm/W at 555nm）から、1.46 \(\times 10^{-3} \) [J/sec \cdot m^2]に換算できる。

・電荷収集時間\(t_i \) [sec], 照度\(P \) [lux], 面積\(S \) [m^2]の場合の入射フォトン数\(N_p \)は、

\[
N_p = 0.404 \times 10^{16} \cdot t_i \cdot P \cdot S \quad [個]
\] となる。

【計算例】(1)から1画素に1フォトン入射するに要する照度\(P_i \)を求める。

\(t_i = 10^{-8} \) sec (100Mfps) 、画素サイズ:10μm角の場合の\(N_p = 1 \)になる照度\(P_i \)は、

\(P_i = 247 \) [lux]になる。

→ 外部量子効率を1に近づけても、約250luxで1電子が得られるに留まる。

→ Photon Counting の領域

100電子の信号を得るには、約25,000luxが必要。

→ 用途（被写体）によるが、画素サイズは出来るだけ大きくするのが良いか？

【拡大例】画素サイズを33μm角に拡大すれば、感度（入射フォトン数）は1桁増加。

面積拡大により、メモリ数も増加できるので、連続200 frames程度は容易。

→ 以上の課題を踏まえ、画素サイズを含めた画素設計を最適化する必要がある。
高速度カメラ応用分布図

安藤幸司, 高速度カメラ入門 Q&A