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Diamond Beam Monitor Motivation
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• Luminosity at the LHC is rising rapidly – now ~7x1033cm-2s-1

• Luminosity is a counting issue – requires good segmentation in 
space or time

• Problems occur when particle multiplicity reaches a point where 
all segments have high probability of having a hit in every 
bunch crossing
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DBM Motivation: lessons learned
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• Luminosity measurement with the ATLAS diamond BCM

• Speed, robustness, stability required for good luminosity

Single Particle Counting:  single ch/detector
                                 in-time Luminosity
                                 out-of-time Background

σ=0.7ns
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DBM Motivation: lessons learned
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• The BCM rate (speed) is BCID aware

• Provides robust rate measurements, ~ 10-3 backgrounds 

OR AND

A ONLY C ONLY
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DBM Motivation: lessons learned
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• Two independent luminosity measurements BCMH and BCMV:

              Stable over months                          Stable against pile-up

• In 2011 BCM achieved a 1.9% luminosity measurement! 
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DBM Motivation: lessons learned
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• The BCM is preferred ATLAS luminosity device since early 2011:

• Calibrated in Van der Meer scans
• Operates when other systems are not active!
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DBM Motivation
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• But the BCM will begin to saturate at ~1034 cm-2s-1:

• More segmentation → Diamond Beam Monitor (DBM)
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The ATLAS DBM Concept
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• Build on success of BCM – pixelate the sensors
– Use IBL diamond pixel demonstrator module
– Install during new Service Quarter Panel (nSQP) 

replacement
– Four 3-plane stations on each side of the IR 

DBM: 3.2<η<3.5
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The ATLAS DBM Concept
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• 24 diamond pixel modules arranged in 8 telescopes provide
– Bunch by bunch luminosity monitoring
– Bunch by bunch beam spot monitoring

• Installation in July 2013

DBM

BCM

Pixel

BPSS
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The ATLAS DBM Specs and Collaboration
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• Specs:
– Bunch by bunch luminosity monitoring (<1% per BC per 

LB)
– Bunch by bunch beam spot monitoring (unbiased sample, 

~ 1cm)
• Installation in July 2013

 Bonn    CERN   Göttingen Ljubljana N.Mexico  OhioSt Toronto   
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The ATLAS DBM Tracking Simulation
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• Simulate DBM to find orientation and resolution
– Focus on z vertex resolution (momentum resolution bad)

50µm in Φ direction 50µm in r direction

σz= ~4cm σz=~0.6cm
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The ATLAS DBM Concept

1212

• Mechanics finalized – use as many IBL parts as possible
• Mechanical simulations complete → Al, AlN, Peek

Four Telescopes on Cruciform
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The ATLAS DBM Concept
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• Cooling simulations complete – transfer heat to support

Single Telescope w/ Cooling Channel Cooling Channel w/ Bracket Plate
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The ATLAS DBM Concept
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• Cooling simulations for DBM telescope w/3 x 1W + AlN side 
plate

Single Telescope w/ Cooling Channel Parameters: 
     Support rod material = Aluminum
     Bushing material = AlN
     Slide, Bracket = PEEK
     Diamond plate =AlN
     Ceramic Support = AlN
     Side Cooling Plate = AlN (1mm)
     Cooling Pipe constrained to 0°C
Result: Max T = 14.2°C
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The ATLAS DBM Concept
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• Mechanical simulations for DBM telescope w/3 x 1W + AlN side 
plate

Single Telescope w/ Cooling Channel Parameters: 
     Meshed at 150% Auto-Mesh size
     Support rod material = Aluminum
     Bushing material = AlN
     Slide, Bracket = PEEK
     Diamond plate =AlN
     Ceramic Support = AlN
     Boiler channel constrained to 0°C
Result: Max Displacement = 26.2 μm
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The ATLAS DBM Concept

1616

• Heat Flux through a DBM telescope w/3 x 1W

Single Telescope w/ Cooling Channel
Parameters: 
     Meshed at 150% Auto-Mesh size
     Support rod material = Aluminum
     Bushing material = Aluminum
     Slide, Bracket = PEEK
     Diamond plate =AlN
     Ceramic Support = AlN

     Side Cover = AlN
     Air surrounding DBM – transparent
     Air surface constrained to 0°C
     Cooling pipe constrained to 0°C
Result: Total Flux Out = 0.12W
             Total Flux In =  3W
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DBM Module Production
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• Sensors
• 14 old sensors in hand from E6 (UK) from IBL work
• 10 new sensors in hand from E6 (UK)
• 17 sensors ordered from II-VI (US)

• Quality Control
• 5 old sensors/3 new sensors passed QC (ccd, I)
• 9 old sensors/7 new sensors in testing

• Bump bonding
• 4 prototype modules bump-bonded by IZM
• 5 sensors at IZM for bump-bonding

X-ray after
bump bonding

Module on test board
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DBM Module Production Problems
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• HV Problems with first modules
• Backside metalization goes to the edge of diamond and 

breaks down
• Fixed by changing back metalization procedure – no 

longer performed by IZM



H. KaganPixel2012 – Sep. 3, 2012

DBM Module Testbeam
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• Three Testbeam campaigns 
• Oct 11, Mar 12, Jun 12

• Learning about FE-I4 performance
• Calibration/tunings for low 

threshold performance
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DBM Module Testbeam
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Prototype Modules Tested:
• 21mmx 18mm pCVD diamond 

w/FE-I4A
• 336 x 80 = 26880 channels
• 50 x 250 μm2 pixel cell

Results
• Noise map uniform
• Efficiency >95%

Noise map of a DBM module
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DBM Module Testbeam
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Prototype Modules Tested:
• 21mmx 18mm pCVD diamond w/FE-I4A
• 336 x 80 = 26880 channels
• 50 x 250 μm2 pixel cell

Results
• Spatial resolution looks digital
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DBM and Other Diamond Projects
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ATLAS DBM

Beam
monitors Particle

trackers
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DBM and Radiation Damage
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• Traditionally CCD was fited with the ansatz
• We measure CCD

• Radiation induced traps reduce the mean 
free path (mfp)

• CCD ~ mfpe + mfph in thick detectors 
where t>>mfp,CCD

• Relation between CCD and mfp

• For lack of data assume mfpe = mfph 

• kmfp insensitive to mfpe/mfph

mfp = mfpe+mfph

CCD=Qcol/(36e/µm)

1
CCD

=
1

CCD0

+k×Φ

1
mfp

=
1

mfp0

+k×Φ

ccd
t

=∑
i=e,h

mfpi

t [1−mfpi

t
(1−e

−
t

mfp
i )]
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RD42 24GeV Proton Radiation Damage (PS)
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• CCD evaluated with strip 
detectors in CERN test beam

• For mean free path expect

• mpf0  is initial trapping 
deduced from CCD0 

• kmfp is the damage constant

• pCVD and scCVD follow 
same curve

• kmfp ~ 0.66 x 10-18 μm-1cm-2

1
mfp

=
1

mfp0

+k×Φ



Diamond Radiation Tolerance
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DPA based on Displacement Energy: 
Si:~25eV; Diamond~42eV

RD42 data

From S. Mueller Thesis

• DPA scaling seems better?  Predicts k
300MeVpi

~ k
70MeVp

~ 2.6x



Summary of RD42 Test Beam Results
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Particle Energy Relative k

p 24GeV 1.0

800MeV 1.6-1.8

70MeV 2.5-2.8

25MeV 4.0-5.0

π 200MeV 2.5-3.0
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Summary

Construction of the largest diamond pixel tracker 
underway

Satisfies constraints for precision luminosity 
measurement 
Bunch by bunch measurement
Background separation uses z resolution 

Should be robust against
Pile-up
Radiation damage

2727
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Backup Slides
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DBM Detector Production Problems

2929

• The first DBM detectors produced were re-claimed 800µm 
thick detectors which had to be thinned 

• Thinning recovered 14/27 detectors
• The rest were not useable due to cracks or edge 

problems
• The thinning process took longer and was harder than 

anticipated but was eventually solved
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RD42 800MeV Proton Radiation Damage (LANL)
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1
mfp

=
1

mfp0

+k×Φ

• CCD evaluated with strip 
detectors in CERN test beam

• For mean free path expect

• mpf0  is initial trapping 
deduced from CCD0 

• kmfp is the damage constant

• pCVD and scCVD follow 
same curve

• kmfp ~ 1.2 x 10-18 μm-1cm-2

• 70MeV protons are 1.8x 
more damaging than 24GeV 
protons
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RD42 70MeV Proton Radiation Damage (CYRIC)
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• CCD evaluated with strip 
detectors in CERN test beam

• For mean free path expect

• mpf0  is initial trapping 
deduced from CCD0 

• kmfp is the damage constant

• only pCVD measured

• kmfp ~ 1.7 x 10-18 μm-1cm-2

• 70MeV protons are 3x more 
damaging than 24GeV 
protons

1
mfp

=
1

mfp0

+k×Φ
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RD42 25MeV Proton Radiation Damage (KIT)
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• CCD evaluated with strip 
detectors in CERN test beam

• For mean free path expect

• mpf0  is initial trapping 
deduced from CCD0 

• kmfp is the damage constant

• pCVD and scCVD follow 
same curve

• kmfp ~ 2.6 x 10-18 μm-1cm-2

• 25 MeV protons are 4x more 
damaging than 24GeV 
protons

1
mfp

=
1

mfp0

+k×Φ



RD42 Pion Irradiations
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•Performed at PSI with 200MeV π up to 6.5x1014 π/cm2  

k
ccd

 ~ 2.0x10-18 μm-1cm2 3x more damaging than 
24GeV protons



Diamond Radiation Tolerance: 800MeV protons

Result: 800 MeV protons 
1.8x more damaging than 
24GeV protons

k ~ 1.2x10-18 μm-1cm2

NIEL prediction 1.8x
NIEL ok !

1 more scCVD data point 
irradiated in Dec 2011 
[(1.6+1.0)x1015] awaiting 
Jul Test Beam

Test beam results - ccd

34H. KaganRD42 Meeting - Mar. 16, 2012

Recent Irradiation with 800 MeV protons at LANSCE 
Facility in Los Alamos, US

34



Diamond Radiation Tolerance: 800MeV protons

Test beam results - mfp – zoom view

35H. KaganRD42 Meeting - Mar. 16, 2012 35



Diamond Radiation Tolerance
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 New results from low energy irradiations
 Deviation from calculated NIEL at low energy? NIEL violation?

or is the theory incorrect? Use FLUKA-DPA scaling?

36


