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Introduction 
• Luminosity upgrade to LHC driven by  

– Desire to reduce statistical uncertainties 
– Desire to increase search for new physics at 

higher energy via lower probability events 

• Luminosity increase by an order of magnitude 
– Corresponding increase in occupancy (depends 

on luminosity leveling) 
– Radiation damage to a maximum of  
       1016 1MeV neq/cm2 

• 4 pixel barrel layers 
– Radius from 39 mm to 250 mm 
– Z: ±449 mm to ±694 mm (outer 2 layers) 

• 6 Pixel disks 
– Rinner = 150 mm 
– Router = 315 mm 
– Z: 820 mm to 1890 mm 
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Pixel system for HL-LHC 

• Pixel modules should be  
– Large with high active fraction 

• Reduced material 
• Reduced cost of assembly 

– Thin 
• Reduced material 
• Reduced power from sensor 

– Low power ROIC 
• Reduce cooling material 

– Small pixel size 
• Cope with increased occupancy 

– High rate multiplexed data 
• Reduce pile-up 
• Reduced data links 

– Serial power 
• Reduced service material 

• 2 Inner Barrel layers 
– Sensors 

• All sensor materials possible 
• 150 μm silicon or thinner 

– Pixel size 25 μm x 150 μm  
– ROIC thickness 150 μm 
– ToT = 0-8 bits 
– 2x1 and 2x2 chip modules 

– 2x2 sensor = 33.9 mm x 40.6 mm 
– Data rate as high as 2 Gbit/s per module 

• 2 outer Barrel layers / Disks 
– Sensor 

• planar n-in-p 
• 150 μm 

– Pixel size 50 μm x 250 μm 
– ROIC thickness 150 μm 
– ToT = 4 bits 
– 2x2 (Quad) and 2x3 (Hex) chip modules 
– Data rates of 640 Mbit/s per module 

7th Sept. 2012 R. Bates  PIXEL2012 4 



Sensor wafer design 

• 2 wafer designs fabricated at Micron Semiconductor Ltd. 
– All 6 inch 10k Ohm-cm FZ material 
– n-in-p sensors with p-spray isolation 
– 300 μm and 150 μm thick wafers made 
(Only assembled 300 μm devices at VTT to date) 

–  Vfd = 70 V 
 

 
• CERN Pixel II wafer 

– Singles with differing guard ring designs 
– Including slim edge – 200 μm wide guard rings 

 

• CERN Pixel IV wafer 
– 5 quad and 8 singles FE-I4 sensors  
– Quads include slim edges design 
– Singles includes a 25 x 500 μm implant device 
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The next wafer design 

• Bias dot optimization to increase detection 
efficiency after high radiation dose 

• Poly-silicon bias structures 
– Remove bias dot completely 
– AC couple detectors possible 
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25x500 µm2  

50x1000 µm2  

100x125 µm2  125x167 µm2  

25x1000 µm2  

• Test vehicle for different layouts and 
structures 

• All compatible with FE-I4 
• Disks 

– Square pixels may be an advantage for 
tracking 

• Large radius use strips 
– Lower position resolution requirements 
– Lower power and cost 

• Long large area implants 
– Turn off some pixels to save cost 
– Lower density flip-chip to reduce cost 

 
 
 

 



Single chip assemblies 

• UBM and PbSn bumps 
deposited on FE-I4 wafers 
– Visually inspected after 

bumping 
– One wafer thinned to 200um 

post bumping 

• 300um thick sensors 
– UBM deposited at VTT 
– IV measured post dicing at VTT 

before assembly 

• 15 single assemblies fabricated 
at VTT 
– 5 single assemblies mounted 

on SCC and tested 
– 10 to be irradiated in PS and 

Ljubljana neutron reactor 
 

• DAQ is USBPix single chip 
system from Bonn 

• Devices tuned for in-time 
thresholds 3200e and 1600e 

• Devices characterized to find 
– Noisy pixels 
– Merged bumps 
– Disconnected pixels 
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Assemblies IV characteristics 

• IV measured 
– On wafer after fabrication 
– After UBM & dicing 
– As assembies 

• IV same post assembly to pre-flip 
chip 
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• Current < 2nA/cm2 @ 20C and 90 V 
• Some devices current < 1 μA for 

1000V 
• Lower breakdown for slim edge 

devices 
– Still above Vfd = 70V 
– HV performance improves after 

irradiation 

 



Tuning of assemblies 
• Each device tuned for 

– in-time threshold = 3200 e 
– ToT = 8 for 20,000e 

• Then down to Vth = 1600e 

• Operated in forced air flow at 20C 
for all tests 

• Devices appear to work well 

Mean 3200e 
Sigma 23e 

Mean 130e 
Sigma 6.7e 
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Characterization 

• Analogue scan to find 
dead pixels 
– No dead pixels 
– Expect for 1 assembly 

• Dead pixels = 35 

• Stuck pixel scan 
– No stuck pixels except for 

24 in row 0, as expected 

• Noise occupancy scans  
– Average of 3 pixels per 

device 
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Merged bumps 

• There is no cross-talk between 
pixels for an un-bonded FE-I4 
– Cannot inject enough charge 

• For fully depleted detector 
– No cross-talk at Vth = 3200e 

• If cross talk then due to 
merged bumps 

• Average number of merged 
bumps = 2 

• Cross-talk measured by 
– Applying injection and readout 

mask 
 
 
 

 
– Inject large charge w.r.t. in-time 

threshold 

inject 

inject 

RO 
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Un-bonded Channels 
A: Pixel noise 

• Observe low noise pixels 
– No detector capacitance 

load 

– Ignore dead/masked pixels 

Threshold scan for high and 0 V detector bias 

• At high detector bias 
noise over matrix 
approximately constant 
– 150e for this device 
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Un-bonded channels 
B: Pixel Cross-talk 

• There is no cross-talk between 
un-bonded pixel channels 
– Cannot inject enough charge 

• For 0 V bias  
– Pixels coupled via detector 

capacitance 
 cross-talk high  
– Un-bonded channels those 

with no cross talk 

• Cross-talk measured by 
– Applying injection and readout 

mask 
 
 
 
 

 
– Inject large charge w.r.t. in-time 

threshold 

inject 

inject 

RO 
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Cross-talk with 25 x 500 um pixel 
device 

• Never register cross-talk 
with HV off 

• Due to implant design 
don’t inject signal in 
neighbouring pixels 

• Inter-pixel capacitance 
about the same as 
standard pixel due to 
implant design 
– Measured noise is the 

same for both 25x500 and 
50 x 250 sensor designs 

 

 

 

• Implants and ROIC pixels 
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Un-bonded channels 
C: Am-241 Gammas 

• Flood illuminate sensor 
with 60keV gammas 
from Am-241 

• Use HitOr (hit in a pixel) 
output from FE-I4 for 
self trigger 

– Required to remove 
stuck/noise pixels 

• Non-responding pixels 
are not bonded 
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3 million events  



Disconnected bumps 

• The 3 methods gave similar 
results 
– Agreement within 4% 

• All assemblies are non-perfect 
• Large areas of non-boned pixels 

at the corners & edges 
– Have 3% to 66% open bumps 

 

Bump Process Flow 
1. Deposit UBM and bumps on ROIC 
2. Thin ROIC to 200 μm / Diced 
3. On vacuum jigs perform flip-chip 

for tack bond 
4. Re-flow in reducing atmosphere in 

oven (260C) unsupported assembly 
 Self-align bumps 
 Obtain good electrical properties 

ROIC bows due to non-symmetric layup 
– Thick dielectric layers on top side 
– Just silicon on back side 

Solution under investigation 
– Support wafer technology 
– Deposition of balancing dielectric on 

ROIC 
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Quad-Sensor selection 

• Wafers processed at VTT 
– UBM 
– Dicing 

• Characterized at VTT for selection 
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• Characterized electrically 
– Full depletion by 70 V 
– Current in plateau:  
30 - 40 nA < 3 nA/cm2  
@20C & 90V 

• Good yield 
– 7 from 10 hold Vfd + 30V 
– HV operation: 5 fine to 

400 V  
            (I < 2 μA) 
– Singles much better 1000 

V operation possible 

• Breakdown all at the 
outer guard-ring 
– Quads more edge than 

singles 
 



Quad modules 

• Test vehicle for module 
building and testing 

• 4 quad modules started 
– 1 with 200 μm ROIC 

– 3 with full thickness ROIC 

• IV of quad sensor 
unchanged by flip-chip 
assembly process 
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Module assembly 

• Kapton based hybrid (from Bonn) 
• Glued to sensor 

– Re-use of SCT construction equipment 
– Uses optical alignment to place hybrid 

relative to ROIC 

• Wire bond down to the FE-I4 
• Module mounted in carrier PCB and 

bonded to PCB 

• DAQ is single chip USBPix system 
• Present flex routes only data lines 

from one chip 
• Decided to route data via carrier PCB 
• PCB has switches to select data lines 
• Configuration selection done via DAQ 

and chip address 
• ROIC LV generated on support PCB 
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HV distribution 

LV distribution 

FEI4 selection 
To USBPix 

Quad module 



Quad data so far 

Chip 3 Chip 4 

• Data comes off chip/PCB fine 
• Configuration of all 4 ROIC done 
• Verification of module and 

support card  
• Full device characterization just 

starting 

RX_Delay Occupancy RX_Delay Occupancy 

Data out 
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Next steps for quad assembly 
• Quad rigid PCB design taking place in collaboration 

– Simpler module mounting procedure 
– PCB will have 4 RJ45 connectors to allow true 4 chip RO with SLAC developed RCE/HSIO DAQ system  

• Design of a flex system based on flex/rigid hybrids 
– Successfully being used for ATLAS strip tracker upgrade 
– Very fast and accurate 
– PCB has precision holes for alignment 
– Stencil application of glue 
– Test connectors cut off at end of build 

 
 
 
 

Final Module 

Chip attachment to hybrid 

Chip/hybrid pick up tool 

Stencil for glue application to ROIC/Hybrid 7th Sept. 2012 21 R. Bates  PIXEL2012 



Other module/future work 
Through Silicon Vias (TSV) 

• Reduction of dead area via 
removal of wire bond pads 

• 4 side buttable assemblies 
• Sensor must be active over 

EOCL region 
– Sensor design taking place 

• TSV last process being 
investigated 

• High aspect ratio (5:1) vertical 
side wall TSV from front side 
– Allows TSV monitoring before 

wafer thinning 
– Non-critical end point (width 

increase due to over etch) 
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Scottish Microelectronics Centre’s high yielding Cu ECD TSV’s 

VTT’s tapered via with partial 
plating and RDL – minimises stress 

above 15µm Cu thickness 



Other work/Future work 
Data Multiplexing & redundancy  

Primary Objectives – Reduce Mass 
 Multiplex four FE-I4s to one Tx pair of wires 
 Multiplex clock and configuration data into one Rx pair 
 Combine the Tx and Rx pairs into one using Full-duplex 

or Half-duplex 
 Reduce number and size of passives on the modules 
 Facilitate reliable AC-coupled data for serial power – 

reduction of cable size 
 Allow other FE-I4s to function if one fails 
 Other possible I-O functions via same data pair, such as 

current reference trim for FE-I4s 
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Combined Input and Output Mux 
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A Possible output Mux Configuration 
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Multiplexing concept 
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Summary 

• Micron 6inch FE-I4 single and quad sensors 
– 300 μm and 150 μm 

• Assemblies with flip-chip VTT 
– Excellent assembly IV characteristics 

– Problems at the edge due to bow with low bump 
yield 

• Quad module 
– Hybrid option 

• Plans for further development  
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Back Up slides 
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Analogue FE 
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~4MIP dynamic range X6 no shaping 



Through Silicon Vias 
Comparison of FE-I3 and FE-I4  

Motivation for decision 

Ali pad 

IBM Front-side stack 

Dead 
Zone 

TSV 

• FE-I3 offers an easier route to developing a 
TSV process 

• FE-I3 represents a more realistic approach 
to integrating TSVs in terms of 
manufacturability (high yielding TSVs) 

• Process test structures and ET test 
structures to be developed in parallel 

• Process development on FE-I3 to be used in 
next FE-Ix chip and a clear definition of TSV-
ready given 

• FE-I4 has no route through the IBM front-
side stack 

• Active metal everywhere under and 
surrounding the pad 

• Connection only possible from etching the 
back-side of the wafer 

• Complications arise to pinch through 
dielectric/poly-Si sandwich to contact 
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Quad modules 

1 pair/Module 
Carry clk-cmd-data 
Start to consider cable design 

EoS card 
Multiplexing?  

Contains: output data 
multiplexer & 
manchester decoder & 
(half-)duplexer  
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