PImMS

an event-triggered time-stamping sensor with storage of multiple timestamps

Jaya John John, on behalf of the PImMS Collaboration 6 September 2012, PIXEL2012, Inawashiro

DEPARTMENT OF **PHYSICS**

DEPARTMENT OF

Science & Technology Facilities Council Rutherford Appleton Laboratory

Outline

- Context and requirements for PImMS sensors
- PImMS1 and PImMS2 sensors
 - Specifications, design and operation
 - Project timeline and status
 - PImMS1 characterisation
 - PImMS1 application results
- Summary and future work

PImMS 1

7.2 mm

Context: time of flight mass spectrometry

PImMS Collaboration • Jaya John John • PIXEL2012, Inawashiro

Pixel Imaging Mass Spectrometry

Combines time-of- flight MS with 2D ion imaging.

We can image:

- the velocities of the ions at their point of formation -- giving info on fragmentation dynamics, or
- the positions of the ions at their point of formation – used in surface imaging or parallel acquisition of multiple mass spectra from an array of samples

Requirements: self-triggering

- Proof of concept experiments with a fast-framing camera: multiphoton fragmentation of dimethyldisulfide (images recorded in 2008 using a Dalsa Zenith CCD camera).
- Required prior knowledge of timing of mass peaks, programming the framing for the known time of arrival of each peak.

M. Brouard, E.K. Campbell, A.J. Johnsen, C. Vallance, W.H. Yuen, and A. Nomerotski, Rev. Sci. Instrum. 79, 123115, (2008)

Requirements: multiple timestamps

- Want a fast sensor, flexible to analyse any mass spectrum
- Sparse events → consider time-stamping approach
- To record both early and late ions, need multiple memories. How many? Simulate:

all 40 ions simulated

Requirements: timing resolution

- Initial spec for time resolution: 50ns
- Updated spec, based on our significant progress in mass spectrometer timing, is to distinguish ions with a mass difference of 1 Dalton over a wide range of masses.
- This yields a new target spec of 12.5ns (see results later)

Time Resolution for $\Delta m = 1$

If we want $\Delta m = 1$:

- m/Δm ≈ t/2Δt
- ∆t = t/2m

PImMS Collaboration • Jaya John John • PIXEL2012, Inawashiro

PImMS sensors: specifications

Spec	PlmMS1	PImMS2
Array size	72 x 72 pixels	324 x 324 pixels
Active area	5mm x 5mm	22.7mm x 22.7mm
Sensor size	7mm x 7mm	25.4mm x 26.1mm
Pixel size	70μm x 70μm	
Pixel threshold trim	4 trim bits + 1 masking bit per pixel	
Timestamp storage	Four 12-bit registers per pixel	
Test pixel	1 test pixel with access to inner analogue nodes	
Time resolution	Initial spec: 50ns; simulation target: 25ns Updated spec: 12.5ns	
Current performance	12.5ns verified	(will be tested in future)
Substrate	5µm ері	5μm epi 18μm high-resistivity epi

PImMS pixel

Pixel operation

PImMS Collaboration • Jaya John John • PIXEL2012, Inawashiro

PImMS sensors: overview

PImMS1

PImMS2

PImMS Collaboration • Jaya John John • PIXEL2012, Inawashiro

PImMS1 to PImMS2:

New features:

- Array size increased to 324x324
- Additional digital output taps
- Additional analogue outputs
- Extra counters
- Right hand side driver circuitry for row control signals
- Internal bias generator
- Extra pixel trim bias

PImMS sensors: technology

- 0.18µm CMOS fabrication
- INMAPS process developed at the Rutherford Lab:

Isolated N-well Monolithic Active Pixel Sensors

- PImMS pixel: 615 transistors per pixel
- over 3 million transistors in total for PImMS1

Readout: camera

- USB control and readout
- F-mount SLR lens
- C-mount SLR lens also possible delivers more light to sensor

- Cooling system based on copper finger and Peltier device
- Connection for nitrogen/dry air flushing

Project timeline and status

Milestone	Date
Start of PImMS project	July 2009
PImMS1 sensor received and first light	December 2010
PImMS2 design start	March 2011
PImMS1 first mass spectrometry results	April 2011
Resolution of several PImMS1 camera (DAQ) issues	January 2012
PImMS1 25ns timecodes verified	April 2012
PImMS2 design submitted	February 2012
PImMS1 12.5ns timecodes verified	Last week
PImMS2 current status: wafers are being diced	This week
Next steps: wirebonding then initial tests of PImMS2	Second half of September

PImMS1 characterisation: timing resolution

- Testing with timecodes at increasing speeds, using a low-power laser pulse generator
- The edges of the laser spot have progressively lower intensity, showing the degree of timewalk, ~125ns

PImMS Collaboration • Jaya John John • PIXEL2012, Inawashiro

Timing resolution, continued

Timecodes present in one frame only:

- sigma 1.65
- time resolution 20.6ns

Timecodes present in all frames:

- sigma 1.68
- time resolution 21ns

Timecodes present for a single pixel:

- sigma 0.33
- time resolution 4.1ns

PImMS Collaboration • Jaya John John • PIXEL2012, Inawashiro

PImMS1 characterisation: dead time

Results for firing two lasers at the same set of pixels, varying the delay between the lasers.

If the second laser occurs within the dead time, no pulse will be recorded in the second register.

Results for 4 individual pixels, showing the range of responses.

Application results

Applications: velocity map imaging

- N,N-dimethylformamide (DMF) is a prototype molecule for studying peptide bond cleavage.
- PImMS data on the 193 nm photolysis of DMF is shown below.

PImMS Collaboration • Jaya John John • PIXEL2012, Inawashiro

Applications: coincidence imaging

- Here bromine gas (Br₂) is dissociated. By switching the polarity of the ion optics, first the electrons are imaged, then the ions.
- (a) shows the mass spectrum including ⁷⁹Br⁺ and ⁸¹Br⁺
- (b) shows the mass intersections for the electrons and Br ions
- (c) zooms in on the two isotopes, ⁷⁹Br⁺ and ⁸¹Br⁺

Applications: spatial imaging

- This is imaging the mass spectrum over a 2D surface.
- Materials used: lines of Auramine O (yellow) and Rhodamine 590 (red)
- The samples produced 10 mass peaks in all.
 5 are highlighted here.
- Data taken at 25ns time resolution
- Demonstrates multimass imaging

Spatial imaging, continued

For an intense area of the image, we investigated:

- the proportion of each mass peak seen
- in which pixel register the mass peaks appeared.

PImMS Collaboration • Jaya John John • PIXEL2012, Inawashiro

Summary and future work

- PImMS is both a new technique in mass spectrometry and a self-triggered time-stamping sensor.
- PImMS1 has been proven for mass spectrometry, operating at 12.5ns timecode rates (4x initial spec)
- Multiple memories record various events within one experimental cycle.
- Taking a wider view, PImMS also suits other applications generating step changes of signal.
- PImMS2 testing will begin in the second half of September, promising improved spatial resolution, with its larger pixel array.

Thank you for your attention. Questions?

The PImMS Collaboration

Mark Brouard, Edward Halford, Alexa Lauer, Craig Slater, Benjamin Winter, Wei Hao Yuen Claire Vallance, James Bull, Cécilia Cauchy, Sara Gardiner, Jason Lee, Laura Lipciuc, Edward Wilman Department of Chemistry, University of Oxford

Andrei Nomerotski, Richard Nickerson, Xavier Coubez, Laura Hill, Jaya John John, Robert Pisarczyk Department of Physics, University of Oxford

> Renato Turchetta, Andy Clark, Jamie Crooks, Ben Marsh, Iain Sedgwick STFC Rutherford Appleton Laboratory

The support of the STFC, ICONIC, EPSRC, ERC, RC-UK and ISIS Innovation Ltd. are gratefully acknowledged.