

PIXEL LUMINOSITY TELESCOPE: LHC/CMS PILOT RUN

Dean Andrew Hidas Rutgers / CERN

PIXEL2012

September 3 – 7, 2012 Inawashiro, Japan

The PLT Collaboration

CERN

Martin Gastal, Marina Giunta, Rob Loos, Vladimir Ryjov

Princeton University

Valerie Halyo, Bert Harrop, Phil Hebda, Paul Lujan, Dan Marlow, David Stickland

Rutgers University

Ed Bartz, Christian Contreras-Campana John Doroshenko, Richard Gray, Eva Halkiadakis, Dean Andrew Hidas^{**}, Steve Schnetzer, Sunil Somalwar, Robert Stone, Peter Thomassen

University of Tennessee

Mark Foerster, Grant Riely, Stefan Spanier, Zongchang Yang

University of Wisconsin

Jim Cook, Cathy Farrow

Vanderbilt University

Andres Delannoy, Will Johns

Vienna Institute for High Energy Physics Manfred Pernicka*, Helmut Steininger

Past members

Karen Andeen, Oleksiy Atrementov, Bill Bugg, Gary Grim, Richard Hall-Wilton, Dmitry Hits, Richard Lander, Alick Macpherson, Lalith Perera, Nuno Rodriguez, Bil Gabella, Matt Hollingsworth

PLT Overview

- Dedicated stand-alone luminosity monitor for CMS
- High precision bunch-by-bunch luminosity
- Array of 3-plane telescopes each end of CMS
- Single-crystal diamond pixel sensors
- Measure bunch-by-bunch 3-fold coincidence rate
- Pixel readout for tracking and diagnostics

PLT Design

- From simulation expect
 - 0.005 tracks / pp collision / telescope
- For 10³⁴ / cm² / s
 - 1.6 tracks in PLT per bunch crossing
 - or > 18000 tracks for each of 2835 filled bunches

1% statistical precision on relative bunch luminosity in < 1s

 Additionally, pixel tracking will allow online beamspot measurement

PLT Hardware

- Telescope
 - Made from 3 Hybrid boards (diamond detectors)
- Cassette
 - Self-contained quarter-detector
- Opto-board
 - Control and readout of full cassette

PLT Cassette

HDI

Hybrid with diamond sensor and readout chip Flexi-cables to the optoboard

- Several successful testbeams in the last year
- CERN PS (10 GeV protons)
 - Measure charge collection, study tracking, test DAQ

Testbeams

- Uniform hit efficiencies
- Not ideal environment to measure efficiencies (timing, edge effects, etc)
 - But still very high efficiencies

- Raw alignment residuals (no software alignment)
 - ~1 pixel width (~100 um)
 - Better than expected alignment

2012 Pilot Installation

 In January we installed 4 diamond telescopes and one with silicon on the +Z castor table in CMS (14.5m from collision point)

2012 Pilot Run

- First experience with diamond pixel detectors in high rate, high intensity environment
- Check out of full PLT system
- Finalize DAQ, DQM, and control software
- Develop precision software alignment technique
- Develop luminosity publishing tools
- Determine if there is any aging of sensors or electronics with radiation
- Test sensitivity to SEUs
- Test luminosity measurement

Pilot run started in April and will continue for the rest of the run

Pilot run installation configuration

Si pixel telescope

4 diamond pixel telescopes

Pilot Run Radiation Environment

 Radiation environment in pilot location is more severe than in the final installation location

First LHC Measurements

First Tracks

First Tracks seen with the PLT from LHC beam

4 Diamond telescopes and one silicon telescope

One known missing HV. Has been fixed

First LHC Measurements

LHC Bunch structure as seen with PLT

"Histograms" of 3-fold coincidences allow us to measure the luminosity in each 25ns LHC bucket

Sum "total" used to visualize instantaneous luminosity

Installed one silicon telescope (without cooling).

VdM Scan - Luminosity

- Beams are "scanned" across each other in X and in Y
- · We measure the rate as a function of beam separation
 - For us this is "counts" in our "fastor" (3-fold coincidence) histograms

Early Pre-Collision Data

- Mostly beam halo
- Recorded rate is around 200 Hz

PulseHeightTrack Ch14 ROC2

Pulse Height: One pixel cl Two pixel cl >= 3 pixel cl

< 0.1 fb⁻¹

PulseHeightTrack Ch14 ROC2

20000

-A

40000

Electrons

- 1 Pixel

— 2 Pixel

—≥3 Pixel

Early Low Luminosity Runs

PulseHeightTrack Ch14 ROC1

Recorded rate is 4 kHz per telescope

Pulse Height: One pixel cl Two pixel cl >= 3 pixel cl

< 0.1 fb⁻¹

Early High Luminosity Runs

Recorded rate is 7.5 MHz per telescope

Pulse Height: One pixel cl Two pixel cl >= 3 pixel cl

< 0.1 fb⁻¹

Pulse Height Shift With Luminosity

< 0.1 fb⁻¹

Pre-Collision Data 500V

Recorded rate is 150 Hz per Telescope

Avg Charge Ch 14 ROC 1 Pixels All

PulseHeightTrack Ch14 ROC2

Pulse Height: One pixel cl Two pixel cl >= 3 pixel cl

Avg Charge Ch 14 ROC 2 Pixels All

8.5 fb⁻¹

Low Luminosity at 500V

Recorded rate is 3 kHz per Telescope

Avg Charge Ch 14 ROC 1 Pixels All

Pulse Height: One pixel cl Two pixel cl >= 3 pixel cl

8.5 fb⁻¹

High Luminosity at 500V

Recorded rate is 10 MHz per Telescope

Pulse Height: One pixel cl Two pixel cl >= 3 pixel cl

8.5 fb⁻¹

Pre-Collision Data 1100V

Recorded rate is 200 Hz per Telescope

High Luminosity at 1100V

Recorded rate is 10 MHz per Telescope

Pulse Height: One pixel cl Two pixel cl >= 3 pixel cl

Testing Removed Planes

- We removed 3 planes from Castor after ~7 fb⁻¹
- Higher voltage dramatically increases charge collection
 - Both in pilot installation and on test stand with removed planes
- Consistent with what we see (and continue to see) in pilot installation

Efficiencies

- Studying the efficiencies in all of the previous • cases
 - Make guantitative comparisons
- Need to account for large backgrounds •

- Fit the background in 2D outside the signal region
 - Estimate background in signal region and subtract

Future Plans

- Study 3 diamonds removed from pilot installation after 7fb⁻¹ of LHC collisions
- CERN PS testbeam in October
 - Unirradiated diamonds
 - pilot run (castor) diamonds
 - neutron (Oak Ridge) irradiated diamonds
 - proton (Los Alamos) irradiated diamonds
- Test varying high voltage
- Would like to perform high rate-high intensity tests (up to 100 MHz)
- Study dependence on high voltage
- Long term: Full installation in long shutdown 1 (LS1)
 - Late 2013

Summary

- Successfully built a full detector system
- Promising results from testbeams
- Installation of PLT for pilot run in CMS
- Are continuing to monitor and investigate the degradation in charge collection
- Looking forward to a full installation in the long shutdown

Thank you!

Backup

LHC Luminosity

CMS Total Integrated Luminosity, p-p

Full Luminosity

Reference

- The CMS Pixel Chip
 - Allseandro Gaz (Pixel 2012): CMS Pixel Status

https://indico.cern.ch/contributionDisplay.py?sessionId=2&contribId=67&confId=137337