Recent results on 3D double sided detectors at IMB-CNM

G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Centro Nacional de Microelectrónica (IMB-CNM-CSIC) Spain

S. Grinstein, A Gimenez, A. Micelli, S. Tsiskaridze Institut de Física d'Altes Energies (IFAE) Spain

IMB-CNM facilities

Clean Room

- 1.500 m2, class 100 to 10.000
- Micro and nano fabrication technologies.

Processes

- 4" complete
- 6" partial

GIII)

Available technologies:

CMOS, BiCMOS, MCM-D, MEMS/NEMS,

G. Pellegrini

- power devices
- Bump bonding packaging

Silicon micromachining

Laboratories: Characterization and test

- DC and RF (up to 8 GHz)
- Wafer testing
- Thermography
- Radiation testing

Reverse Engineering Simulation CAD

- Mechanical Workshop Chemical sensors
- **Bio-sensors**
- **Optical sensors**
- **Radiation sensors**

Pixel Status: AFP

Pixel detectors: technology choice in high-energy physics for innermost tracking and vertexing.

3D detectors: candidates to be installed in new Insertable B-Layer (IBL) of ATLAS experiment. Production already finished.

220m to ATLAS P1

G. Pellegrini

- AFP: detect very forward protons at 220m from IP, with pixel detectors for position resolution and timing detectors for removal of pile up protons.
- Both Si and timing detectors mounted in movable beam pipe
- Silicon detector has to have small dead inactive region on side into beam
- Non-uniform irradiation of the detectors.

3D Technology:

4" silicon wafer

- 285um FZ high resistivity wafers (n and p- types) All fabrication done in-house
 - ICP etching of the holes: Bosch process, ALCATEL 601-E
 - Holes partially filled with LPCVD polysilicon doped with P or B
 - P-stop ion implantation
- Double side process proposed by CNM in 2006 First fabrication of 3D double sided in 2007. Since 2007 runs ongoing continuously.
- In 2010 CNM started the fabrication on 230um thicl wafers.
- Devices tested under extreme radiation fluences.

G. Pellegrini

Different test beam successfully carried out on **3D Features:** device before and after irradiation at SHLC fluences ($2*10^{16}$ cm² 1 MeV n Eq.).

- High electric field
- Short path collection
- Low depletion voltage

CNM G. Pellegrini

3D process flow

CAM G. Pellegrini

Production

- Part of IBL 3D sensors fabricated at CNM
- Common layout within the Atlas 3D collaboration (http://test-3dsensor.web.cern.ch/test-3dsensor/).
- Sensors produced for the geometry of the FE-I4 chip:
 - 50um x 250um
 - 210um columns in 230um p-bulk
 - 2E configuration (2 readout electrodes/pixel)
- Extensive characterization and testing being done at Barcelona with un-irradiated and irradiated devices up to 5.11x 10¹⁵ neq/cm²

G. Pellegrini

http://dx.doi.org/10.1016/j.nima.2012.07.058

Irradiated IBL Devices

• Several planar and 3D IBL devices irradiated to IBL fluencies (5E15 neq/cm²)

CNM devices irradiated:

Device	Irradiation [<i>neq</i> / <i>cm</i> ²]	Irr Facility
SCC36	p-irrad 6 * 10 ¹⁵	KIT
SCC34	p-irrad 5 * 10 ¹⁵	KIT
SCC97	p-irrad 5 * 10 ¹⁵	KIT
SCC100	p-irrad 2 * 10 ¹⁵	KIT
SCC82	n-irrad 5 * 10 ¹⁵	TRIGA
SCC81	n-irrad 5 * 10 ¹⁵	TRIGA

 Critical to characterize devices before and after irradiation.

For 3D devices irradiated to IBL fluencies power dissipation is not an issue

Instituto de Microelectrónica de Barcelona

MicroscoperFAE Pixel Teststand

DAQ system

Device Performance (laboratory)

Voltage scan for p-irradiated devices shows that 160V is the optimal operating voltage

0.//ux.u01.01g/10.1010/j.11111a.2012.03.043

G. Pellegrini

Test-beam Results

CNM devices have been tested in the CERN testbeam and have shown efficiencies >97% after irradiation (according

to IBL specifications)

Pixel efficiency map: fold efficiency to 1 (± 0.5) pixel (match track in 3x3pixel window)

CNM55: un-irradiated **Odeg** incidence HV = 20Veff=99.4%

Post processing for slim edges

What can be improved for HEP or other applications?

Reduce the dead area at the detector edges. Laser-Scribing and Al2O3 Sidewall Passivation of P-Type Sensors : (see Vitaliy Fadeyev's poster)

Negative charges induced by Al₂O₃ deposited by ALD process, isolate the sidewall surface cut in p-type wafers reducing surface current.

Work done in collaboration with:

Marc Christophersen, Bernard F. Phlips (NRL) Naval Research Laboratory U.S.

and within RD50 collaboration (CERN)

G. Pellegrini

Vitaliy Fadeyev, Scott Ely, Hartmut F.-W. Sadrozinski (SCIPP, UCSC) University of California, Santa Cruz U.S.

- Annealing of alumina layer reduces leakage current (same effect as seen for solar cells).
- Formation of native oxide (wrong surface charge) ↑ leakage current.
- Native oxide forms rapidly (within seconds/minutes) in air.
- Native oxide: ~ 2 nm thick, high charge trap density.

G. Pellegrini

- Laser-scribing and cleaving common in LED industry
- Automated tools for scribing and breaking of devices on wafer-scale

XeFe₂ etching and cleaving

Laser cutting and ALD done at NRL Marc Christophersen

G. Pellegrini

Gilii

SEM micrographs (bird's-eye view)

New samples with slim edges (Atlas FE-I4 pixels)

								•										-			
	0			•••		•						•		0		•	0	•		0	
_	- ਹ	0.0				60 (S)(O)	3) (U)			(D) (D) (D)		(O) (O)		() () ()	89 SEC.			(C) (C) (C)	() () () () () () () () () () () () () (0
55um		•	0				(O)		0							•				()	
			eio) (078)			(O)		(0)	(CO) (O))			010		Measure Main No. 1		ure	Enla	sult	Sav	e as C:	
		0				0		0	(1)	() () () () () () () () () () () () () ((1)() ······	(0)(0)	(0)100	Coun O	t		(Msr X Y D		1	1	

G. Pellegrini

FE-I4 IV measurements

Detectors ready for flip chip.

Spare 3D FE-I4 detectors from IBL production done at CNM. Normally from damaged wafers.

New samples with slim edges (Atlas FE-I3 pixels)

G. Pellegrini

Full current after flip chip, measured through FE.

Instituto de Microelectrónica de Barcelona

Flip-chipped by IFAE (to 700um-thick old FE)
Wirebonded by CNM

15

- Sr 90 charge collection vs HV
- ToT: time over threshold in 25ns units
- Full depletion at 20V for these devices

G. Pellegrini

Atlas FE-I3 Geometry

16

Noise vs HV

- Threshold set to 3200e (same as current ATLAS Pixel detector – FEI3)
- Noise of the order of 100e (unirradiated)

G. Pellegrini

Noise stable vs bias voltage

In-Homogeneous Irradiation and Test-beam Results

- AFP devices will receive an in-homogeneous irr dose (up to 2E15 neq/cm2)
 - Irradiation done at CERN (24 GeV protons)
- IBL-sensors were irradiated 'a la-AFP' and their performance evaluated with beam
- Work done with the ATLAS IBL, 3D and AFP groups

CERN 3D Testbeam

G. Pellegrini

Preliminary results for CNM(57) device:

- Operated at 130V
- Beam pointing to "irradiated side"
- Cooled with dry-ice (-30C)

Preliminary efficiency: 98.3%

Conclusions

•At Barcelona we have the full chain for sensor production, assembly and testing available.

- •The CNM sensors for the Atlas-IBL perform as specified after being irradiated
- The first tests of the proposed cleavage procedure have been shown
 For AFP, even a small yield can guarantee the procurement of the needed sensors for the first installation
- •A production of special sensors for AFP can be started at CNM once the IBL production is finished
- •If technological issues are solved we might have them ready for the first installation opportunity of AFP

Future Work

•Test beam data under analysis.

- •Some detectors have been sent for irradiation.
- •Flip chip to FE-I4 electronics (when FE available to CNM-IFAE).
- •Next test beam in October 2012 at CERN.

Back up slides

H. Garcia et al., 220th ECS Meeting **Physics and Technology of High-k Materials 9** - October 9 - October 14, 2011, Boston, MA ECS Transactions, v. 41, no. 3, 2010, pp. 349-359

Irradiations were performed at Takasaki-JAERI in Japan 2 MeV electrons for three different fluences: $\phi = 1 \times 10^{14} \text{ e/cm}^2$, $1 \times 10^{15} \text{ e/cm}^2$ and $1 \times 10^{16} \text{ e/cm}^2$ The total ionizing doses were about 2.5 Mrad-Si, 25 Mrad-Si and 250 Mrad-Si Irradiation was performed at room temperature and capacitors not biased.

🖬 🌒 🛛 G. Pellegrini